Introduction: Brain-imaging techniques have begun to be popular in evaluating the effectiveness of cognitive intervention training. Although gamma activities are rarely used as an index of training effects, they have several characteristics that suggest their potential suitability for this purpose. This pilot study examined whether cognitive training in elderly people affected the high-gamma activity associated with attentional processing and whether high-gamma power changes were related to changes in behavioral performance.
View Article and Find Full Text PDFSpontaneous imitation is assumed to underlie the acquisition of important skills by infants, including language and social interaction. In this study, functional magnetic resonance imaging (fMRI) was used to examine the neural basis of 'spontaneously' driven imitation, which has not yet been fully investigated. Healthy participants were presented with movie clips of meaningless bimanual actions and instructed to observe and imitate them during an fMRI scan.
View Article and Find Full Text PDFBackground: Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly.
Methods: Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle.
The current study used a magnetoencephalogram to investigate the relationship between high-gamma (52-100 Hz) activity within an attention network and individual differences in behavioral performance among healthy elderly adults. We analyzed brain activity in 41 elderly subjects performing a 3-stimulus visual oddball task. In addition to the average amplitude of event-related fields in the left intraparietal sulcus (IPS), high-gamma power in the left middle frontal gyrus (MFG), the strength of high-gamma imaginary coherence between the right MFG and the left MFG, and those between the right MFG and the left thalamus predicted individual differences in reaction time.
View Article and Find Full Text PDFCan ongoing fMRI BOLD signals predict fluctuations in swiftness of a person's response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color-word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable.
View Article and Find Full Text PDF