Aim: This study aimed to evaluate the ovarian tissue culture and in vitro follicle growth as safer alternatives to cryopreservation for generating in vitro fertilization (IVF)-ready mature oocytes from prepubertal mice without the risk of cancer cell contamination.
Methods: Ovaries from prepubertal B6D2F1 mice were cultured in α-minimum essential medium supplemented with an estrogen receptor antagonist, ICI 182780. Culture duration was investigated to identify the optimal timeframe for follicle growth and oocyte maturation.
Purpose: Functional magnetic resonance imaging (fMRI) visualizes hemodynamic responses associated with brain and spinal cord activation. Various types of pain have been objectively assessed using fMRI as considerable brain activations. This study aimed to develop a pain model in cynomolgus macaques undergoing knee surgery and confirm brain activation due to resting pain after knee surgery.
View Article and Find Full Text PDFIn vivo neuroimaging could be utilized as a noninvasive tool for elaborating the CNS mechanism of chronic pain and for elaborating mechanisms of potential analgesic therapeutics. A model of unilateral peripheral neuropathy was developed in the cynomolgus macaque, a species that is phylogenetically close to humans. Nerve entrapment was induced by placing a 4 mm length of polyvinyl cuff around the left common sciatic nerve.
View Article and Find Full Text PDFMaintaining effective analgesia during invasive procedures performed under general anesthesia is important for minimizing postoperative complications and ensuring satisfactory patient wellbeing and recovery. While patients under deep sedation may demonstrate an apparent lack of response to noxious stimulation, areas of the brain related to pain perception may still be activated. Thus, these patients may still experience pain during invasive procedures.
View Article and Find Full Text PDFStudy Question: Can pain be objectively assessed in macaques with naturally occurring endometriosis?
Summary Answer: Behavioral, pharmacological and in vivo brain imaging findings indicate that pain can be quantified in macaques with endometriosis.
What Is Known Already: Endometriosis is characterized by abdominopelvic hypersensitity. The mechanism by which endometriosis evokes pain is largely unknown, as currently available analgesics offer limited pain relief.