Publications by authors named "Mizuho Hasegawa"

Interleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11) cells are not fully understood. To characterize IL-11 cells in vivo, we generate Il11 reporter mice.

View Article and Find Full Text PDF

Gut dysbiosis associated with intestinal inflammation is characterized by the blooming of particular bacteria such as adherent-invasive E. coli (AIEC). However, the precise mechanisms by which AIEC impact on colitis remain largely unknown.

View Article and Find Full Text PDF

N-formyl peptide receptors (FPRs) serve as phagocyte pattern-recognition receptors that play a crucial role in the regulation of host defense against infection. Epithelial cells also express FPRs, and their activation during inflammation or injury results in enhanced epithelial migration and proliferation and improved mucosal wound repair. However, signaling mechanisms that govern epithelial FPR1 activity are not well understood.

View Article and Find Full Text PDF

The intestinal mucosa is lined by a single layer of epithelial cells that forms a tight barrier, separating luminal antigens and microbes from underlying tissue compartments. Mucosal damage results in a compromised epithelial barrier that can lead to excessive immune responses as observed in inflammatory bowel disease. Efficient wound repair is critical to reestablish the mucosal barrier and homeostasis.

View Article and Find Full Text PDF

Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways.

View Article and Find Full Text PDF

The microbiota stimulates inflammation, but the signaling pathways and the members of the microbiota involved remain poorly understood. We found that the microbiota induces interleukin-1β (IL-1β) release upon intestinal injury and that this is mediated via the NLRP3 inflammasome. Enterobacteriaceae and in particular the pathobiont Proteus mirabilis, induced robust IL-1β release that was comparable to that induced by the pathogen Salmonella.

View Article and Find Full Text PDF

Pathobionts play a critical role in disease development, but the immune mechanisms against pathobionts remain poorly understood. Here, we report a critical role for interleukin-22 (IL-22) in systemic protection against bacterial pathobionts that translocate into the circulation after infection with the pathogen Clostridium difficile. Infection with C.

View Article and Find Full Text PDF

The benefits of commensal bacteria to the health of the host have been well documented, such as providing stimulation to potentiate host immune responses, generation of useful metabolites, and direct competition with pathogens. However, the ability of the host immune system to control the microbiota remains less well understood. Recent microbiota analyses in mouse models have revealed detailed structures and diversities of microbiota at different sites of the digestive tract in mouse populations.

View Article and Find Full Text PDF

Periodontitis is a common dental disease which results in irreversible alveolar bone loss around teeth, and subsequent tooth loss. Previous studies have focused on bacteria that damage the host and the roles of commensals to facilitate their colonization. Although some immune responses targeting oral bacteria protect the host from alveolar bone loss, recent studies show that particular host defense responses to oral bacteria can induce alveolar bone loss.

View Article and Find Full Text PDF

Atopic dermatitis is a chronic inflammatory skin disease that affects 15-30% of children and approximately 5% of adults in industrialized countries. Although the pathogenesis of atopic dermatitis is not fully understood, the disease is mediated by an abnormal immunoglobulin-E immune response in the setting of skin barrier dysfunction. Mast cells contribute to immunoglobulin-E-mediated allergic disorders including atopic dermatitis.

View Article and Find Full Text PDF

Periodontitis is a common disease that is characterized by resorption of the alveolar bone and mediated by commensal bacteria that trigger host immune responses and bone destruction through unidentified mechanisms. We report that Nod1, an innate intracellular host receptor for bacterial peptidoglycan-related molecules, is critical for commensal-induced periodontitis in a mouse model. Mice lacking Nod1 exhibit reduced bone resorption as well as impaired recruitment of neutrophils to gingival tissues and osteoclasts to the alveolar bone, which mediate tissue and bone destruction.

View Article and Find Full Text PDF

Nucleotide oligomerization domain-containing protein 2 (Nod2), an innate immune receptor, recognizes bacterial cell-wall peptidoglycan (PGN), the minimum ligand of which is muramyl dipeptide (MDP). Enzymatic digestion of PGN appears to be important for Nod2 recognition. PGN is degraded by muramidase or glucosamidase through a process that produces two types of glycan sequence; glycans containing GlcNAcβ(1→4)MurNAc or MurNAcβ(1→4)GlcNAc.

View Article and Find Full Text PDF

Clostridium difficile is a Gram-positive obligate anaerobic pathogen that causes pseudomembranous colitis in antibiotic-treated individuals. Commensal bacteria are known to have a significant role in the intestinal accumulation of C. difficile after antibiotic treatment, but little is known about how they affect host immunity during C.

View Article and Find Full Text PDF

Clostridium difficile is a Gram-positive obligate anaerobic pathogen that causes pseudomembranous colitis in antibiotics-treated individuals. However, host immune protective mechanisms against C. difficile are largely unknown.

View Article and Find Full Text PDF

Fine-tuning of host cell responses to commensal bacteria plays a crucial role in maintaining homeostasis of the gut. Here, we show that tumor necrosis factor receptor-associated factor (Traf)2(-/-) mice spontaneously developed severe colitis and succumbed within 3 weeks after birth. Histological analysis revealed that apoptosis of colonic epithelial cells was enhanced, and B cells diffusely infiltrated into the submucosal layer of the colon of Traf2(-/-) mice.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (Nod1) is an intracellular protein involved in recognition of the bacterial component peptidoglycan. This recognition event induces a host defense response to eliminate invading pathogens. The genetic variation of Nod1 has been linked to several inflammatory diseases and allergies, which are strongly affected by environmental factors.

View Article and Find Full Text PDF

Commensal bacteria possess immunostimulatory activities that can modulate host responses to affect development and homeostasis in the intestine. However, how different populations of resident bacteria stimulate the immune system remains largely unknown. We characterized here the ability of intestinal and oral microflora to stimulate individual pattern recognition receptors (PRRs) in bone marrow-derived macrophages and mesothelial cells.

View Article and Find Full Text PDF

Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is an adaptor molecule that mediates inflammatory and apoptotic signals. Although the role of ASC in caspase-1-mediated IL-1beta and IL-18 maturation is well known, ASC also induces NF-kappaB activation and cytokine gene expression in human cells. In this study, we investigated the molecular mechanism and repertoire of ASC-induced gene expression in human cells.

View Article and Find Full Text PDF

Bacterial cell wall peptidoglycan (PGN) is a potent immunostimulator and immune adjuvant. The PGN of Gram-negative bacteria and some Gram-positive bacteria contain meso-diaminopimelic acid (meso-DAP), and we have recently shown that the intracellular protein Nod1 is a PGN receptor and recognizes DAP-containing peptides. In this study, we achieved the synthesis of DAP-containing PGN fragments, including the first chemical synthesis of tracheal cytotoxin (TCT), GlcNAc-(beta1-4)-(anhydro)MurNAc-L-Ala-gamma-D-Glu-meso-DAP-D-Ala, and a repeating-unit of DAP-type PGN, GlcNAc-(beta1-4)-MurNAc-L-Ala-gamma-D-Glu-meso-DAP-D-Ala.

View Article and Find Full Text PDF

Nod1 is an essential cytoplasmic sensor for bacterial peptidoglycans in the innate immune system. The caspase-recruitment domain of Nod1 (Nod1_CARD) is indispensable for recruiting a downstream kinase, receptor-interacting protein 2 (RIP2), that activates nuclear factor-kappaB (NF-kappaB). The crystal structure of human Nod1_CARD at 1.

View Article and Find Full Text PDF

Nod1 and Nod2 are intracellular proteins that are involved in host recognition of specific bacterial molecules and are genetically associated with several inflammatory diseases. Nod1 and Nod2 stimulation activates NF-kappaB through RICK, a caspase-recruitment domain-containing kinase. However, the mechanism by which RICK activates NF-kappaB in response to Nod1 and Nod2 stimulation is unknown.

View Article and Find Full Text PDF

The latest decade, our understanding of pattern-recognizing receptors involved in innate immune system has been accumulated. One class of the pattern recognizing receptors, the toll-like receptors (TLRs) are well known to detect extracellular pathogens on the cell surface membrane. On the other hand, recently discovered the nucleotide-binding oligomerization domain proteins (NODs) are involved in recognizing intracellular pathogens.

View Article and Find Full Text PDF

Human histone H2AX is rapidly phosphorylated on serine 139 in response to DNA double-strand breaks and plays a crucial role in tethering the factors involved in DNA repair and damage signaling. Replication stress caused by hydroxyurea or UV also initiates H2AX phosphorylation in S-phase cells, although UV-induced H2AX phosphorylation in non-cycling cells has recently been observed. Here we study the UV-induced H2AX phosphorylation in human primary fibroblasts under growth-arrested conditions.

View Article and Find Full Text PDF

Nod1 is an intracellular protein that is involved in recognition of bacterial molecules and whose genetic variation has been linked to several inflammatory diseases. Previous studies suggested that the recognition core of Nod1 stimulatory molecules is gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP), but the identity of the major Nod1 stimulatory molecule produced by bacteria remains unknown. Here we show that bacteria produce lipophilic molecules capable of stimulating Nod1.

View Article and Find Full Text PDF

RICK is a kinase that has been implicated in Nod1 and Nod2 signaling. In addition, RICK has been proposed to mediate TLR signaling in that its absence confers reduced responses to certain bacterial products such as LPS. We show here that macrophages and mice lacking RICK are defective in their responses to Nod1 and Nod2 agonists but exhibit unimpaired responses to synthetic and highly purified TLR agonists.

View Article and Find Full Text PDF