The large number of active sites in the layered structure of δ-MnO with considerable interlayer spacing makes it an excellent candidate for ion storage. Unfortunately, the δ-MnO-based electrode has not yet attained the exceptional storage potential that it should demonstrate because of disappointing structural deterioration during periodic charging and discharging. Here, we represent that stable Na ion storage in δ-MnO may be triggered by the preintercalation of K ions and water molecules.
View Article and Find Full Text PDFIn this work, MnO/NiO nanocomposite electrode materials have been synthesized by a cost-effective hydrothermal method. The effect of the concentrations (0, 1, 3, 5, and 7 wt%) of NiO nanoparticles on the surface morphology, structural properties, and electrochemical performance of the nanocomposites was characterized by different characterization techniques. The scanning electron micrographs (SEM) reveal that the as-prepared NiO nanoparticles are well connected and stuck with the MnO nanowires.
View Article and Find Full Text PDFClubroot, caused by Plasmodiophora brassicae, is an important disease of brassica crops worldwide. Vegetable turnip (Brassica rapa L.) have proven to be a source of clubroot resistance genes effective against many pathotypes of P.
View Article and Find Full Text PDFObjectives: Emergence of carbapenem-resistant Pseudomonas aeruginosa is limiting current treatment options. Carbapenemases and their association with integrons can cause rapid dissemination of resistance traits. We report here the co-existence and chromosomal inheritance of all four classes of β-lactamase and the presence of a unique class 1 integron (intI1) harbouring blaVIM-5 within a single isolate of P.
View Article and Find Full Text PDFRationale: Soluble guanylate cyclase (sGC) heme iron, in its oxidized state (Fe), is desensitized to NO and limits cGMP production needed for downstream activation of protein kinase G-dependent signaling and blood vessel dilation.
Objective: Although reactive oxygen species are known to oxidize the sGC heme iron, the basic mechanism(s) governing sGC heme iron recycling to its NO-sensitive, reduced state remain poorly understood.
Methods And Results: Oxidant challenge studies show that vascular smooth muscle cells have an intrinsic ability to reduce oxidized sGC heme iron and form protein-protein complexes between cytochrome b5 reductase 3, also known as methemoglobin reductase, and oxidized sGC.
8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated derivative of guanosine 3',5'-cyclic monophosphate (cGMP) formed endogenously under conditions associated with production of both reactive oxygen species and nitric oxide. It acts as an electrophilic second messenger in the regulation of cellular signaling by inducing a post-translational modification of redox-sensitive protein thiols via covalent adduction of cGMP moieties to protein thiols (protein S-guanylation). Here, we demonstrate that 8-nitro-cGMP potentially S-guanylates thiol groups of cGMP-dependent protein kinase (PKG), the enzyme that serves as one of the major receptor proteins for intracellular cGMP and controls a variety of cellular responses.
View Article and Find Full Text PDFBackground: Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh.
Result: Six (6) Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp.
The vertebrate globins are a group of hemoproteins with the intrinsic capacity to regulate gaseous ligands and redox signaling required for cardiovascular biology. This graphical review will provide a comprehensive synopsis of somatic cardiovascular globins focusing on expression, function and redox signaling - an emerging area in both physiology and disease.
View Article and Find Full Text PDF