Publications by authors named "Miyun Kwon"

The glycine binding riboswitch forms a unique tandem aptamer structure that binds glycine cooperatively. We employed nucleotide analog interference mapping (NAIM) and mutagenesis to explore the chemical basis of glycine riboswitch cooperativity. Based on the interference pattern, at least two sites appear to facilitate cooperative tertiary interactions, namely, the minor groove of the P1 helix from aptamer 1 and the major groove of the P3a helix from both aptamers.

View Article and Find Full Text PDF

A covalently modified heteroconjugate between linezolid and neomycin B leads to an enhanced and more specific binding affinity to hairpin RNA targets in comparison to neomycin B itself. This heteroconjugate was used as a lure to select linezolid-specific hairpin RNA from an Escherichia coli genome RNA. The selected RNA obtained after eight cycles not only has typical stem-loop structures but also includes known sequences of the linezolid binding site.

View Article and Find Full Text PDF

The ribosome is the ribonucleoprotein particle responsible for translation of genetic information into proteins. The RNA component of the ribosome has been implicated as the catalytic entity for peptide bond formation based on protease resistance and structural data indicating an all-RNA active site. Nevertheless, peptidyl transfer by ribosomal RNA (rRNA) alone has not been demonstrated.

View Article and Find Full Text PDF

Sialyl Lewis X and its derivatives are cell-surface carbohydrates that are involved in cell-cell recognition by carbohydrate-mediated interactions. Unfortunately, owing to the similarities between carbohydrates only a limited number of tools are available for their differentiation. In this study, we prepared a selected phage-displayed peptide library against LeX (2), SLN (3), or LN (4), which compared to sLeX (1) lack sialic acid, fucose, and both sialic acid and fucose from constituents, respectively.

View Article and Find Full Text PDF

We describe the design and synthesis of new heterodimeric conjugates, which are comprised of a neomycin B (Neo) stem-binding component and a chloramphenicol (Cam) or linezolid (Lnz) loop-binding component. Some of the heterodimeric conjugates display enhanced affinities to RNA targets and that binding occurs in both stem and loop regions of the RNA. In addition, the results of foot-printing and mutation studies suggest that the enhanced binding affinity of the conjugates is RNA sequence-specific.

View Article and Find Full Text PDF

Our approach to multivalent peptide construction relies on tentacle peptides, also known as a multiple antigenic peptides, which contain two and four repeats of a selected peptide. In this communication, we report the results of preliminary studies aimed at (1) the selection of short peptides against the carbohydrate, sLeX, (2) the synthesis of tentacle dimers and tetramers of the selected peptides, and (3) the determination of affinities and specificities of the peptides to several related carbohydrates by using the surface plasmon resonance (SPR) and the equilibrium dialysis techniques. Binding affinity studies, as well as assays of in vitro binding of the peptides to a sLeX-specific cell line, have shown that the tetrameric peptides bind to the cell surface sugars.

View Article and Find Full Text PDF