Background: Minimally invasive lumbar fusion has recently become a widely used technique worldwide. This randomized active controlled study was conducted to demonstrate the non-inferiority of the K-wireless Minimally Invasive Spine (MIS) Percutaneous Pedicle Screw (PPS) system compared with use of the six pedicle screw systems currently used in our practices with respect to the accuracy of pedicle screw placement.Also to compare the screw-insertion time and number of fluoroscopic observations during screw insertion between the groups.
View Article and Find Full Text PDFReactions of a tetraphosphine, meso-bis{[(diphenylphosphinomethyl)phenyl]phosphino}propane (dpmppp), with [IrCl(cod)]2 and CO (1 atm) or isocyanide (RNC) in the presence of NH4PF6 at 80-100 °C in dichloromethane/acetonitrile/acetone and/or methanol mixed solvents afforded asymmetric diiridium(ii) complexes, [Ir2(H)(Cl)(μ-(dpmppp-H)-κP(4)C)(CO)3]PF6 (1) and [Ir2(H)(μ-(dpmppp-H)-κP(4)C)(RNC)4)]-(PF6)2 (R = 2,6-xylyl (2), 2,4,6-mesityl (3); dpmppp-H = {PPh(o-C6H4)CH2P(Ph)(CH2)3P(Ph)CH2PPh2}(-)). A similar reaction with (t)BuNC resulted in the formation of a mononuclear Ir(III) complex of [Ir(H)(dpmppp-κP(3))((t)BuNC)2](PF6)2 (4). Complexes 1-3 were characterized by ESI mass spectrometry, (1)H and (31)P NMR spectroscopy and X-ray diffraction analyses.
View Article and Find Full Text PDFElectron-deficient dinuclear rhodium complexes [Rh2Cl2(μ-dpmppp)(RNC)] (1), with the linear tetraphosphine ligand dpmppp, showed reversible binding of molecular oxygen to form asymmetric dirhodium η(2)-peroxo complexes [Rh2Cl2(O2)(μ-dpmppp)(RNC)] (2) stabilized by a Rh→Rh dative bond.
View Article and Find Full Text PDFMethods for quantitative oral administration of various substances to Caenorhabditis elegans are needed. Previously, we succeeded in oral administration of hydrophilic substances using liposomes. However, an adequate system for delivery of hydrophobic chemicals was not available.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are considered to exert antitumor actions in a variety of cancer cells, although the effects are unlikely entirely due to COX inhibition. Because clinical observations suggest that hepatocyte growth factor (HGF) can promote metastasis of hepatoma cells while stimulating tumor invasiveness, we investigated the effect of aspirin and NS-398, a selective COX-2 inhibitor, on HGF-mediated invasiveness of HepG2 human hepatoma cells. HGF stimulated the invasiveness of HepG2 cells in Matrigel cell invasion assay, together with increased expression of matrix metalloproteinase (MMP) 9.
View Article and Find Full Text PDF