Although early detection and diagnosis are indispensable for improving the prognosis of patients with pancreatic cancer, both have yet to be achieved. Except for pancreatic cancer, other cancers have already been screened through scent tests using animals or microorganisms, including . While such a method may greatly improve the prognosis of pancreatic cancer, no studies have investigated the same, mainly given the difficulty of collecting suitable samples from patients with early-stage pancreatic cancer.
View Article and Find Full Text PDFSince the infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China during December 2019, the coronavirus disease 2019 (COVID-19) has spread on a global scale, causing the World Health Organization (WHO) to issue a warning. While novel vaccines and drugs that target SARS-CoV-2 are under development, this review provides information on therapeutics which are under clinical trials or are proposed to antagonize SARS-CoV-2. Based on the information gained from the responses to other RNA coronaviruses, including the strains that cause severe acute respiratory syndrome (SARS)-coronaviruses and Middle East respiratory syndrome (MERS), drug repurposing might be a viable strategy.
View Article and Find Full Text PDFNoncoding microRNAs inhibit translation and lower the transcript stability of coding mRNA, however miR-369 s, in aberrant silencing genomic regions, stabilizes target proteins under cellular stress. We found that in vitro differentiation of embryonic stem cells led to chromatin methylation of histone H3K4 at the miR-369 region on chromosome 12qF in mice, which is expressed in embryonic cells and is critical for pluripotency. Proteomic analyses revealed that miR-369 stabilized translation of pyruvate kinase (Pkm2) splicing factors such as HNRNPA2B1.
View Article and Find Full Text PDFThe M2 isoform of pyruvate kinase, the final rate-limiting enzyme of aerobic glycolysis, is expressed during embryonic development. In contrast, the M1 isoform is expressed in differentiated cells due to alternative splicing. Here we investigated murine embryonic stem cells (ESCs) with or knock-in alleles.
View Article and Find Full Text PDFAlthough esophageal cancer is highly heterogeneous and the involvement of epigenetic regulation of cancer stem cells is highly suspected, the biological significance of epigenetically modified molecules that regulate different subpopulations remains to be firmly established. Using esophageal cancer cells, we investigated the functional roles of the H3K4 demethylase Jumonji/Arid1b (Jarid1b) (Kdm5b/Plu-1/Rbp2-h1), an epigenetic factor that is required for continuous cell growth in melanoma. knockdown resulted in the suppression of esophageal cancer cell growth, sphere formation and invasion ability and was associated with loss of epithelial marker expression.
View Article and Find Full Text PDFWe recently showed that liver metastatic tissue from patients with colorectal cancer (CRC) was a useful model for identifying novel, hypoxia-inducible genes and prognostic markers. We showed that the expression of secretoglobin, family 2A, member 1 (SCGB2A1) was a potential prognostic factor for CRC. Here, we further evaluated the prognostic impact and function of SCGB2A1 in 222 patients with CRC.
View Article and Find Full Text PDFIt is considered that cancer stem cells have the same characteristics as normal stem cells, such as drug-resistance, self-renewal, differentiation, and tissue-formation. Normal stem cells depend on their surroundings, a niche. Cancer stem cells may also depend on their own niche.
View Article and Find Full Text PDFAdipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells.
View Article and Find Full Text PDFThe global incidence of colorectal cancer (CRC) is increasing. Although there are emerging epigenetic factors that contribute to the occurrence, development and metastasis of CRC, the biological significance of epigenetic molecular regulation in different subpopulations such as cancer stem cells remains to be elucidated. In this study, we investigated the functional roles of the H3K4 demethylase, jumonji, AT rich interactive domain 1B (JARID1B), an epigenetic factor required for the continuous cell growth of melanomas, in CRC.
View Article and Find Full Text PDFEarly stages of cancer are curable by surgical removal of the primary lesions, however, more advanced cases are often refractory to therapeutic approaches and are more commonly life-threatening, primarily due to cancer metastasis in gastrointestinal cancers. Such biological events are collectively characterized as tumor heterogeneity, the cause of which is the existence of cancer stem cells. To improve cancer survival, therapy-resistant cancer cells should be eradicated.
View Article and Find Full Text PDFEpigenetic modifications play crucial roles in cancer initiation and development. Complete reprogramming can be achieved through the introduction of defined biological factors such as Oct4, Sox2, Klf4, and cMyc into mouse and human fibroblasts. Introduction of these transcription factors resulted in the modification of malignant phenotype behavior.
View Article and Find Full Text PDFPrevious studies have described distinct dormant and proliferating populations of cancer stem cells in hepatocellular carcinoma. The CD13 protein is involved in the scavenging of reactive oxygen species through the glutathione reductase pathway and is associated with resistance to chemotherapy. Whereas CD13(-) proliferating cancer stem cells are sensitive to chemotherapy, CD13(+) dormant cancer stem cells are associated with the development of resistance to chemotherapy.
View Article and Find Full Text PDFWe previously discovered the coexistence of dormant and proliferating cancer stem cells (CSCs) in gastrointestinal cancer, which leads to chemoradiation resistance. CD13-/CD90+ proliferating liver CSCs are sensitive to chemotherapy, and CD13+/CD90- dormant CSCs have a limited proliferation ability, survive in hypoxic areas with reduced oxidative stress, and relapse and metastasize to other organs. In such CD13+ dormant cells, non-homologous end-joining, an error-prone repair mechanism, is dominant after DNA damage, whereas high-fidelity homologous recombination is apparent in CD13- proliferating cells, suggesting the significance of dormancy as an essential protective mechanism of therapy resistance.
View Article and Find Full Text PDFComplete cell reprogramming can be achieved by the introduction of specific transcription factors, Oct4 [also known as POU class 5 homeobox 1 (Pou5f1)]; sex-determining region Y (SRY)-box 2 (Sox2); Kruppel-like factor 4 (Klf4); and myelocytomatosis viral oncogene homolog (c-Myc), into terminally differentiated mouse somatic fibroblasts. This reprogramming process may be accelerated or suppressed by various factors, including microRNAs (miRNAs). Introduction of these transcription factors or miRNAs considerably modifies the malignant phenotype of cancer cells.
View Article and Find Full Text PDFInduced pluripotent stem (iPS)-like cancer cells (iPC) by the introduction of defined transcription factors reduce the prevalence of the malignant phenotype of digestive system cancer cells, but the induction efficiency is low. The role of hypoxia and TP53 deficiency in iPC cell generation remain unclear. Cellular reprogramming was performed by retroviral infection with OCT3/4, SOX2, KLF4 and c-MYC of wild-type HCT116 colorectal cancer cells and mutant TP53-deficient HCT116 cells.
View Article and Find Full Text PDFCell reprogramming reverts cells to multipotent, preprogrammed states by re-establishing epigenetic markers. It can also induce considerable malignant phenotype modification. Because key events in cancer relapse and metastasis, including epithelial-mesenchymal transition phenotypes, are regulated primarily by reversible and transient epigenetic modifications rather than the accumulation of irreversible and stable genetic abnormalities, studying dynamic mechanisms regulating these biological processes is important.
View Article and Find Full Text PDF