Background: To address the functional roles of genetic polymorphisms of brain-derived neurotrophic factor (BDNF) in Alzheimer's disease (AD) from a neuropsychological aspect, we used a cross-sectional study design to investigate the association between novel single nucleotide polymorphisms (SNPs) of the BDNF gene (Val66Met (G196A) and C270T) and the Frontal Assessment Battery (FAB) score, which reflects executive function as a non-memory cognitive impairment.
Methods: One hundred and sixty-nine outpatients with AD or amnestic mild cognitive impairment (A-MCI) were recruited to the study and divided into three genotypic groups for each representative BDNF functional polymorphism as follows: (i) Val66Met (G196A): G/G (n = 45), G/A (n = 104), and A/A (n = 20); and (ii) C270T: C/C (n = 160), C/T (n = 9), and T/T (n = 0). Then, age, sex ratio, duration of illness (months), education years, Mini-Mental State Examination (MMSE) score, behavioral pathology in Alzheimer disease (Behave-AD) score, Clinical Dementia Rating (CDR) ratio, and total and subtest FAB scores were compared between the genotypic groups for each SNP.
We evaluated the molecular mechanism of telomerase activation by erythropoietin (EPO) in human erythroleukemic JAS-REN-A cells. Telomerase activity increased 3-4 fold after 3-24h of culture with EPO and was associated with increases in c-myc mRNA after 1-3h, of c-Myc protein after 3-6h, and of human telomerase reverse transcriptase (hTERT) mRNA and hTERT protein after 6-24h. Simultaneously EPO induced phosphorylation of signal transducer activator of transcription 5 (STAT5), AKT, and extracellular signal-regulated kinase (ERK).
View Article and Find Full Text PDFAlthough p53 is intact in most cases of retinoblastoma, it is largely inactivated by the ubiqutin-proteasome system through interaction with murine double minute 2 (MDM2) and murine double minute X (MDMX). The present study showed that the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and depsipeptide (FK228) synergistically enhanced ionizing radiation (IR)-induced apoptosis, associated with activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase in Y79 and WER1-Rb1 human retinoblastoma cells. Both VPA and FK228 enhanced IR-induced phosphorylation of histone H2AX on Ser139 preceding apoptosis.
View Article and Find Full Text PDF