Publications by authors named "Miyagawa-Tomita S"

Article Synopsis
  • Coronary arteries are vital for heart nourishment in humans, and their defects can lead to serious health issues, highlighting their evolutionary significance.
  • Some fish species (teleosts) manage to survive without coronary arteries, indicating that tetrapods underwent significant evolutionary changes regarding these blood vessels.
  • The study suggests that true ventricular coronary arteries in amniotes (like mammals and birds) evolved from ancestral structures during development, reflecting major morphological advancements in the vascular system over time.
View Article and Find Full Text PDF

Lymphatic vessels are crucial for tissue homeostasis and immune responses in vertebrates. Recent studies have demonstrated that lymphatic endothelial cells (LECs) arise from both venous sprouting (lymphangiogenesis) and de novo production from non-venous origins (lymphvasculogenesis), which is similar to blood vessel formation through angiogenesis and vasculogenesis. However, the contribution of LECs from non-venous origins to lymphatic networks is considered to be relatively small.

View Article and Find Full Text PDF

Background: The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra-embryonic ASCs (hereafter referred to as iASCs) remain largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • A young patient was diagnosed with atresia of the right coronary arterial ostium and a left ventricular fistula, identified through abnormal ECG results during a school examination and echocardiography.
  • This condition may stem from molecular abnormalities that are crucial for proper coronary artery development.
  • The case underscores the need to suspect this disease when there are ECG irregularities and unexplained coronary artery problems found during echocardiography.
View Article and Find Full Text PDF

Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges.

View Article and Find Full Text PDF

Myocardial infarction (MI) is one of the most common causes of death worldwide. Animal models for MI are useful for studying the pathophysiology and developing therapies. Here, we describe a surgical protocol for permanent ligation of the left anterior descending coronary artery in mice, which mimics human acute coronary syndrome.

View Article and Find Full Text PDF

Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels.

View Article and Find Full Text PDF

Animal models of Down syndrome (DS), trisomic for human chromosome 21 (HSA21) genes or orthologs, provide insights into better understanding and treatment options. The only existing transchromosomic (Tc) mouse DS model, Tc1, carries a HSA21 with over 50 protein coding genes (PCGs) disrupted. Tc1 is mosaic, compromising interpretation of results.

View Article and Find Full Text PDF

The origin of the mammalian lymphatic vasculature has been studied for more than a century; however, details regarding organ-specific lymphatic development remain unknown. A recent study reported that cardiac lymphatic endothelial cells (LECs) stem from venous and non-venous origins in mice. Here, we identified Isl1-expressing progenitors as a potential non-venous origin of cardiac LECs.

View Article and Find Full Text PDF

Background: Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear.

View Article and Find Full Text PDF

Costello syndrome is a "RASopathy" that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. >80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded.

View Article and Find Full Text PDF
Article Synopsis
  • The somatopleure, a crucial part of early amniote development, has unclear boundaries and roles in forming the embryonic body.
  • Researchers observed specific cell movements suggesting two main pathways leading to the formation of the amniotic and thoracic structures.
  • A group of mesodermal cells from the somatopleure migrate into the embryo and are guided by signals like FGF and BMP to develop into important cardiovascular cells, highlighting the somatopleure's dual role in both amniotic structure and heart development.
View Article and Find Full Text PDF

The cardiac neural crest cells (cNCCs) and the second heart field (SHF) play key roles in development of the cardiac outflow tract (OFT) for establishment of completely separated pulmonary and systemic circulations in vertebrates. A neurovascular guiding factor, Semaphorin 3c (Sema3c), is required for the development of the OFT, however, its regulation of the interaction between cNCCs and SHF remains to be determined. Here, we show that a Sema3c is a candidate that mediates interaction between cNCCs and the SHF during development of the OFT.

View Article and Find Full Text PDF

Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland.

View Article and Find Full Text PDF

Activation of the RAS pathway has been implicated in oncogenesis and developmental disorders called RASopathies. Germline mutations in BRAF have been identified in 50-75% of patients with cardio-facio-cutaneous (CFC) syndrome, which is characterized by congenital heart defects, distinctive facial features, short stature and ectodermal abnormalities. We recently demonstrated that mice expressing a Braf Q241R mutation, which corresponds to the most frequent BRAF mutation (Q257R) in CFC syndrome, on a C57BL/6J background are embryonic/neonatal lethal, with multiple congenital defects, preventing us from analyzing the phenotypic consequences after birth.

View Article and Find Full Text PDF

The amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that lower-to-upper jaw transformation induced by inactivation of the Endothelin1-Dlx5/6 cascade involving Goosecoid results in loss of the tympanic membrane in mouse, but causes duplication of the tympanic membrane in chicken.

View Article and Find Full Text PDF

Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations.

View Article and Find Full Text PDF

Tenascin-C (TNC) is an extracellular glycoprotein categorized as a matricellular protein. It is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion, and has a wide range of effects on cell response in tissue morphogenesis and remodeling including the cardiovascular system. In the heart, TNC is sparsely detected in normal adults but transiently expressed at restricted sites during embryonic development and in response to injury, playing an important role in myocardial remodeling.

View Article and Find Full Text PDF

Cardio-facio-cutaneous (CFC) syndrome is one of the 'RASopathies', a group of phenotypically overlapping syndromes caused by germline mutations that encode components of the RAS-MAPK pathway. Germline mutations in BRAF cause CFC syndrome, which is characterized by heart defects, distinctive facial features and ectodermal abnormalities. To define the pathogenesis and to develop a potential therapeutic approach in CFC syndrome, we here generated new knockin mice (here Braf(Q241R/+)) expressing the Braf Q241R mutation, which corresponds to the most frequent mutation in CFC syndrome, Q257R.

View Article and Find Full Text PDF

Congenital heart defects affect at least 0.8% of newborn children and are a major cause of lethality prior to birth. Malformations of the arterial pole are particularly frequent.

View Article and Find Full Text PDF

Lysine methylation of the histone tail is involved in a variety of biological events. G9a and GLP are known as major H3-K9 methyltransferases and contribute to transcriptional silencing. The functions of these genes in organogenesis remain largely unknown.

View Article and Find Full Text PDF

Objective: Acquired heart diseases, such as valve disease, are major causes of human morbidity and mortality. However, the pathological mechanisms underlying these diseases are largely unknown. Our aim is to identify the role of the hairy and enhancer of split-related (Hesr)-2 gene in the adult heart.

View Article and Find Full Text PDF