Publications by authors named "Miya Kamihira"

(-)-Epigallocatechin gallate (EGCg) is the major component of green tea and is known to show strong biological activity, although it can be easily oxidized under physiological conditions. In this study, we indicate that EGCg is stable in human serum and that human serum albumin (HSA) stabilizes EGCg under aerobic condition. Although EGCg is usually decomposed within 1 h in aqueous solution at neutral pH, EGCg in serum and phosphate buffer (pH 7.

View Article and Find Full Text PDF

The quartz-crystal microbalance (QCM) technique was applied to investigate the interaction of tea catechins with lipid bilayers. The association constants obtained from the frequency changes of QCM revealed that (-)epicatechin gallate and (-)epigallocatechin gallate interacted with 1,2-dimyristoyl-sn-glycero-3-phosphocholine ca. 1000 times more strongly than (-)epicatechin and (-)epigallocatechin.

View Article and Find Full Text PDF

Interaction between tea catechins, such as epicatechin gallate (ECg) and epigallocatechin gallate (EGCg), and isotropic bicelle model lipid membranes was investigated by solution NMR techniques. (1)H NMR measurements provided signals from the B-ring and the galloyl moiety in ECg and EGCg that were obviously shifted, and whose proton T1 relaxation times were shortened upon interaction of the catechins with the bicelles. These results indicate that the B-ring and the galloyl moiety play an important role in this interaction.

View Article and Find Full Text PDF

Propolis, a resinous substance collected by honeybees from various plant sources, possesses various physiological activities such as antitumor effects. We have previously shown that propolis of Brazilian origin was composed mainly of artepillin C and that its constituents were quite different from those of propolis of European origin. In this report, we examined an antiangiogenic effects of Brazilian propolis and investigated whether artepillin C was responsible for such effects.

View Article and Find Full Text PDF

We determined the changes in the mutagenic and estrogenic activities of 17beta-estradiol after a nitrite treatment. Nitrite-treated 17beta-estradiol showed mutagenic activities toward Salmonella typhimurium strains TA 100 and TA 98. We confirmed that nitrite-treated 17beta-estradiol generated radicals from the results of an analysis of electron spin resonance.

View Article and Find Full Text PDF

The dynamics of bacteriorhodopsin (bR) and the lipid headgroups in oriented purple membranes (PMs) was determined at various temperatures and relative humidity (rh) using solid-state NMR spectroscopy. The 31P NMR spectra of the alpha- and gamma-phosphate groups in methyl phosphatidylglycerophosphate (PGP-Me), which is the major phospholipid in the PM, changed sensitively with hydration levels. Between 253 and 233 K, the signals from a fully hydrated sample became broadened similarly to those of a dry sample at 293 K.

View Article and Find Full Text PDF

Purple membranes (PM) are two-dimensional crystals formed by bacteriorhodopsin and a variety of lipids. The lipid composition and density in the cytoplasmic (CP) leaflet differ from those of the extracellular (EC) leaflet. A new way of differentiating the two sides of such asymmetric membranes using the phase signal in alternate contact atomic force microscopy is presented.

View Article and Find Full Text PDF

We report for the first time, oriented-sample solid-state NMR experiments, specifically polarization inversion spin exchange at the magic angle (PISEMA) and 1H-15N heteronuclear chemical shift correlation (HETCOR), applied to an integral seven-transmembrane protein, bacteriorhodopsin (bR), in natural membranes. The spectra of [15N]Met-bR revealed clearly distinguishable signals from the helical and loop regions. By deconvolution of the helix resonances, it was possible to establish constraints for some helix tilt angles.

View Article and Find Full Text PDF

Solid-state NMR is emerging as a method for resolving structural information for large biomolecular complexes, such as membrane-embedded proteins. In principle, there is no molecular weight limit to the use of the approach, although the complexity and volume of data is still outside complete assignment and structural determinations for any large (Mr > approx 30,000) complex unless specific methods to reduce the information content to a manageable amount are employed. Such methods include specific residue-type labeling, labeling of putative segments of a protein, or examination of complexes made up of smaller, manageable units, such as oligomeric ion channels.

View Article and Find Full Text PDF

Fibril formation in human calcitonin (hCT) from aqueous solution at pH 4.1 was examined and compared with those at pH 3.3 and 7.

View Article and Find Full Text PDF

Fibrillation of a human calcitonin mutant (hCT) at the position of Asp(15) (D15N-hCT) was examined to reveal the effect of the electrostatic interaction of Asp(15) with charged side chains. The secondary structures of fibrils and soluble monomers in the site-specific (13)C-labeled D15N-hCTs were determined using (13)C cross-polarization magic angle spinning and dipolar decoupled magic angle spinning NMR approaches, sensitive to detect (13)C signals from the fibril and the soluble monomer, respectively. The local conformations and structures of D15N-hCT fibrils at pH 7.

View Article and Find Full Text PDF