Glutamate and GABA co-transmitting neurons exist in several brain regions; however, the mechanism by which these two neurotransmitters are co-released from the same synaptic terminals remains unclear. Here, we show that the supramammillary nucleus (SuM) to dentate granule cell synapses, which co-release glutamate and GABA, exhibit differences between glutamate and GABA release properties in paired-pulse ratio, Ca-sensitivity, presynaptic receptor modulation, and Ca channel-vesicle coupling configuration. Moreover, uniquantal synaptic responses show independent glutamatergic and GABAergic responses.
View Article and Find Full Text PDFThe neurotrophic factor, Glial cell line derived neurotrophi factor (GDNF), exerts a variety of biological effects through binding to its receptors, GDNF family receptor alpha-1 (GFRα1), and RET. However, the existence of cells expressing GFRα1 but not RET raises the possibility that GFRα1 can function independently from RET. Here, it is shown that GFRα1 released from repair Schwann cells (RSCs) functions as a ligand in a GDNF-RET-independent manner to promote axon regeneration after peripheral nerve injury (PNI).
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb)-interpeduncular nucleus (IPN) pathway play critical roles in nicotine-related behaviors. This pathway is particularly enriched in nAChR α3 and β4 subunits, both of which are genetically linked to nicotine dependence. However, the cellular and subcellular expression of endogenous α3β4-containing nAChRs remains largely unknown because specific antibodies and appropriate detection methods were unavailable.
View Article and Find Full Text PDFDopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents).
View Article and Find Full Text PDFSuper-resolution in two-photon excitation (2PE) microscopy offers new approaches for visualizing the deep inside the brain functions at the nanoscale. In this study, we developed a novel 2PE stimulated-emission-depletion (STED) microscope with all-synchronized picosecond pulse light sources and time-gated fluorescence detection, namely, all-pulsed 2PE-gSTED microscopy. The implementation of time-gating is critical to excluding undesirable signals derived from brain tissues.
View Article and Find Full Text PDFThe gold-standard fixative for immunohistochemistry is 4% formaldehyde; however, it limits antibody access to target molecules that are buried within specialized neuronal components, such as ionotropic receptors at the postsynapse and voltage-gated ion channels at the axon initial segment, often requiring additional antigen-exposing techniques to detect their authentic signals. To solve this problem, we used glyoxal, a two-carbon atom di-aldehyde. We found that glyoxal fixation greatly improved antibody penetration and immunoreactivity, uncovering signals for buried molecules by conventional immunohistochemical procedures at light and electron microscopic levels.
View Article and Find Full Text PDFFunctionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed during the perinatal period. In the cerebellum of neonatal rodents, each Purkinje cell (PC) receives synaptic inputs from multiple (more than 4) climbing fibers (CFs). During the first 3 postnatal weeks, synaptic inputs from a single CF become markedly larger and those from the other CFs are eliminated in each PC, leading to mono-innervation of each PC by a strong CF in adulthood.
View Article and Find Full Text PDFThe hippocampus is a critical component of a mammalian spatial navigation system, with the firing sequences of hippocampal place cells during sleep or immobility constituting a "replay" of an animal's past trajectories. A novel spatial navigation task recently revealed that such "replay" sequences of place fields can also prospectively map onto imminent new paths to a goal that occupies a stable location during each session. It was hypothesized that such "prospective replay" sequences may play a causal role in goal-directed navigation.
View Article and Find Full Text PDFObjective: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is pathologically characterized by focal fibrinoid necrosis, in which ANCA-mediated neutrophil extracellular trap (NET) formation and subsequent endothelial cell necrosis occur. Cyclophilin D (CypD) plays an important role in mediation of cell necrosis and inflammation via the opening of mitochondrial permeability transition pores. This study was undertaken to examine the role of CypD in AAV pathogenesis.
View Article and Find Full Text PDFObjectives: The central nervous system disorder in systemic lupus erythematosus (SLE), called neuropsychiatric lupus (NPSLE), is one of the most severe phenotypes with various clinical symptoms, including mood disorder, psychosis and delirium as diffuse neuropsychological manifestations (dNPSLE). Although stress is one of the aggravating factors for neuropsychiatric symptoms, its role in the pathogenesis of dNPSLE remains to be elucidated. We aimed to investigate stress effects on the neuropsychiatric pathophysiology in SLE using lupus-prone mice and patients' data.
View Article and Find Full Text PDFBiological tissues and their networks frequently change dynamically across large volumes. Understanding network operations requires monitoring their activities in three dimensions (3D) with single-cell resolution. Several researchers have proposed various volumetric imaging technologies.
View Article and Find Full Text PDFThe dorsal raphe (DR) nucleus contains many tyrosine hydroxylase (TH)-positive neurons which are regarded as dopaminergic (DA) neurons. These DA neurons in the DR and periaqueductal gray (PAG) region (DA neurons) are a subgroup of the A10 cluster, which is known to be heterogeneous. This DA population projects to the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST) and has been reported to modulate various affective behaviors.
View Article and Find Full Text PDFMajor psychiatric disorders such as attention-deficit/hyperactivity disorder and schizophrenia are often accompanied by elevated impulsivity. However, anti-impulsive drug treatments are still limited. To explore a novel molecular target, we examined the role of dopamine D receptors in impulse control using mice that completely lack D receptors (D5KO mice).
View Article and Find Full Text PDFNeurogenesis occurs in the hippocampus throughout life and is implicated in various physiological brain functions such as memory encoding and mood regulation. L-3,4-dihydroxyphenylalanine (L-DOPA) has long been believed to be an inert precursor of dopamine. Here, we show that L-DOPA and its receptor, GPR143, the gene product of ocular albinism 1, regulate neurogenesis in the dentate gyrus (DG) in a dopamine-independent manner.
View Article and Find Full Text PDFMossy cells (MCs) of the dentate gyrus are key components of an excitatory associative circuit established by reciprocal connections with dentate granule cells (GCs). MCs are implicated in place field encoding, pattern separation, and novelty detection, as well as in brain disorders such as temporal lobe epilepsy and depression. Despite their functional relevance, little is known about the determinants that control MC activity.
View Article and Find Full Text PDFSignal-induced proliferation-associated 1 (SIPA1)-like 1 (SIPA1L1; also known as SPAR1) has been proposed to regulate synaptic functions that are important in maintaining normal neuronal activities, such as regulating spine growth and synaptic scaling, as a component of the PSD-95/NMDA-R-complex. However, its physiological role remains poorly understood. Here, we performed expression analyses using super-resolution microscopy (SRM) in mouse brain and demonstrated that SIPA1L1 is mainly localized to general submembranous regions in neurons, but surprisingly, not to PSD.
View Article and Find Full Text PDFThe cerebellum is essential for the control, coordination, and learning of movements, and for certain aspects of cognitive function. Purkinje cells are the sole output neurons in the cerebellar cortex and therefore play crucial roles in the diverse functions of the cerebellum. The type 1 metabotropic glutamate receptor (mGluR1) is prominently enriched in Purkinje cells and triggers downstream signaling pathways that are required for functional and structural plasticity, and for synaptic responses.
View Article and Find Full Text PDFKey Points: Some ion channels are known to behave as inductors and make up the parallel resonant circuit in the plasma membrane of neurons, which enables neurons to respond to current inputs with a specific frequency (so-called 'resonant properties'). Here, we report that heterologous expression of mouse Kv11 voltage-dependent K channels generate resonance and oscillation at depolarized membrane potentials in HEK293 cells; expressions of individual Kv11 subtypes generate resonance and oscillation with different frequency properties. Kv11.
View Article and Find Full Text PDFIncreasing evidence has shown that voltage-gated L-type Ca channels (LTCCs) are crucial for neurodevelopmental events, including neuronal differentiation/migration and neurite morphogenesis/extension. However, the time course of their functional maturation during the development of excitatory neurons remains unknown. Using a combination of fluorescence in situ hybridization and in utero electroporation-based labeling, we found that the transcripts of Cacna1c and Cacna1d, which encode the LTCC pore-forming subunits, were upregulated in the intermediate zone (IZ) during radial migration.
View Article and Find Full Text PDFFast purinergic signaling is mediated by ATP and ATP-gated ionotropic P2X receptors (P2XRs), and it is implicated in pain-related behaviors. The properties exhibited by P2XRs vary between those expressed in heterologous cells and in vivo. Several modulators of ligand-gated ion channels have recently been identified, suggesting that there are P2XR functional modulators in vivo.
View Article and Find Full Text PDFPurkinje cells (PCs) are principal cerebellar neurons, and several classes of interneurons modulate their activity. Lugaro cells (LCs) are one such inhibitory interneuron with distinctive cytology and location, but still most enigmatic among cerebellar neurons. Here we serendipitously produced a novel transgenic mouse line, where a half of Yellow Cameleon (YC)(+) cells in the cerebellar cortex were judged to be LCs, and YC(+) LCs were estimated to constitute one-third of the total LC populations.
View Article and Find Full Text PDFThe medial habenula (MHb) receives afferents from the triangular septum and the medial septal complex, projects efferents to the interpeduncular nucleus (IPN) in the midbrain to regulate dopamine and serotonin levels, and is implicated in stress, depression, memory, and nicotine withdrawal syndrome. We previously showed that the cell adhesion molecule nectin-2α is localized at the boundary between adjacent somata of clustered cholinergic neurons and regulates the voltage-gated A-type K channel Kv4.2 localization at membrane specializations in the MHb.
View Article and Find Full Text PDFIn the cerebellum, GluD2 is exclusively expressed in Purkinje cells, where it regulates synapse formation and regeneration, synaptic plasticity, and motor learning. Delayed cognitive development in humans with GluD2 gene mutations suggests extracerebellar functions of GluD2. However, extracerebellar expression of GluD2 and its relationship with that of GluD1 are poorly understood.
View Article and Find Full Text PDFClassical eyeblink conditioning is a representative associative motor learning that requires both the cerebellar cortex and the deep cerebellar nucleus (DCN). Metabotropic glutamate receptor subtype 1 (mGluR1) is richly expressed in Purkinje cells (PCs) of the cerebellar cortex. Global mGluR1 knock-out (KO) mice show a significantly lower percentage of conditioned response (CR%) than wild-type mice in eyeblink conditioning, and the impaired CR% is restored by the introduction of mGluR1 in PCs.
View Article and Find Full Text PDF