Publications by authors named "Miwa Watanabe"

Objective: EWS-FLI1 is the most common oncogenic fusion protein in Ewing's sarcoma family tumors (ESFTs). DAX1, an orphan member of the nuclear receptor superfamily, is up-regulated by EWS-FLI1 and plays a key role in the transformed phenotype of ESFTs.

Methods: To discover a functional inhibitor of DAX1 and EWS-FLI1, we screened small-molecular inhibitors using a DAX1 reporter assay system.

View Article and Find Full Text PDF

Context: Family functioning is a modifiable factor associated with major depressive disorder (MDD) and complicated grief (CG) among the bereaved families of patients with advanced cancer; however, the evidence regarding this association is limited.

Objectives: We aimed to explore the association of family functioning with possible MDD and CG among the bereaved families of patients with advanced cancer who died in palliative care units.

Methods: This study is a part of the J-HOPE4 study, a nationwide cross-sectional multi-purpose questionnaire survey conducted in 2018.

View Article and Find Full Text PDF

The Wnt/β-catenin pathway, which is associated with disease progression, is activated in many cancers. Tankyrase (TNKS) has received attention as a target molecule for Wnt/β-catenin pathway inhibition. We identified K-476, a novel TNKS inhibitor, a dual pocket binder that binds to both the nicotinamide and ADP-ribose pockets.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the leading cause of severe vision impairment in patients over the age of 60 years. Choroidal neovascularization (CNV) is the hallmark of neovascular AMD and vascular endothelial growth factor (VEGF) plays a causal role in the formation of CNV. Although regorafenib and pazopanib, small molecule VEGF receptor (VEGFR) inhibitors, were developed as eye-drops, their efficacies were insufficient in clinical.

View Article and Find Full Text PDF

Keap1/Nrf2 pathway regulates the antioxidant stress response, detoxification response, and energy metabolism. Previous reports found that aberrant Keap1/Nrf2 pathway activation due to Kelch-like ECH-associated protein 1 (Keap1) mutations or Nuclear factor E2-related factor 2 (Nrf2) mutations induced resistance of cancer cells to chemotherapy and accelerated cell growth via the supply of nutrients. Therefore, Keap1/Nrf2 pathway activation is associated with a poor prognosis in many cancers.

View Article and Find Full Text PDF

CYP3A probe drugs such as midazolam and endogenous markers, and plasma 4β-hydroxycholesterol (4β-OHC) and urinary 6β-hydroxycortisol-to-cortisol ratios (6β-OHC/C) have been used as markers of CYP3A induction in cynomolgus monkeys, as with humans. However, there is limited information on their sensitivity and ability to detect CYP3A induction, as most studies were evaluated only at a high dose of the inducer, rifampicin (RIF; 20 mg/kg). In the present study, the CYP3A induction by RIF over a range doses of 0.

View Article and Find Full Text PDF

A time-of-day-dependent variation in IgE-mediated passive systemic anaphylaxis was previously reported in ICR mice. In the present study, we investigated time-of-day-dependent variations in IgE-, histamine-, and platelet-activating factor (PAF)-mediated systemic anaphylaxis in C57BL/6, BALB/c, and NC/Nga mice at 9:00 h and 21:00 h, and evaluated the potential influence of glucocorticoids (GCs) on these variations. We found significant time-of-day-dependent variations in IgE-mediated systemic anaphylaxis in C57BL/6 mice, and in histamine- and PAF-mediated systemic anaphylaxis in BALB/c mice.

View Article and Find Full Text PDF

OBJECTIVE To characterize platelet-activating factor (PAF)-induced edema and erythema in the skin of dogs and compare those reactions with histamine-induced cutaneous reactions. ANIMALS 6 healthy Beagles. PROCEDURES Experiments were performed at ≥ 2-week intervals.

View Article and Find Full Text PDF

The objectives of this study were to determine daily variation in intradermal reactivity to histamine in dogs and to evaluate a potential influence of glucocorticoids on reactivity. Wheal sizes formed after intradermal injections of histamine were measured every 6 h during a single 24 h period in six healthy dogs. To determine whether glucocorticoids were implicated in daily variation, intradermal reactivity to histamine was evaluated at 9:00 h and at 21:00 h during a single day in dogs that received oral prednisolone (a synthetic glucocorticoid) or oral trilostane (an inhibitor of endogenous glucocorticoid synthesis).

View Article and Find Full Text PDF

Background: Under experimental conditions, virtually all behaviors of Caenorhabditis elegans are achieved by combinations of simple locomotion, including forward, reversal movement, turning by deep body bending, and gradual shallow turning. To study how worms regulate these locomotion in response to sensory information, acidic pH avoidance behavior was analyzed by using worm tracking system.

Results: In the acidic pH avoidance, we characterized two types of behavioral maneuvers that have similar behavioral sequences in chemotaxis and thermotaxis.

View Article and Find Full Text PDF

Local thyroid hormone catabolism within the mediobasal hypothalamus (MBH) by thyroid hormone-activating (DIO2) and -inactivating (DIO3) enzymes regulates seasonal reproduction in birds and mammals. Recent functional genomics analysis in birds has shown that long days induce thyroid-stimulating hormone production in the pars tuberalis (PT) of the pituitary gland, which triggers DIO2 expression in the ependymal cells (EC) of the MBH. In mammals, nocturnal melatonin secretion provides an endocrine signal of the photoperiod to the PT that contains melatonin receptors in high density, but the interface between the melatonin signal perceived in the PT and the thyroid hormone levels in the MBH remains unclear.

View Article and Find Full Text PDF

We here report on a surface plasmon resonance (SPR) sensor carrying small organic ligands for the detection of single-nucleotide polymorphisms (SNPs). Two kinds of ligands are prepared, both of which have a hydrogen-bond forming site suitable for nucleobase recognition, and have an active amino group for the immobilization to the sensor chip. While the sensor immobilized flavin does not show any useful responses, the sensor based on 3,5-diaminopyrazine shows a highly selective response to thymine over other nucleobases opposite an abasic site in DNA duplexes (5'-GTT GGA GCT GXG GGC GTA GGC-3'/3'-CAA CCT CGA CNC CCG CAT CCG-5', X = AP site, N = target; G, C, A, T).

View Article and Find Full Text PDF

In order to adapt to seasonal changes, animals exhibit robust changes in their reproductive status, body weight, and molt. However, the molecular mechanisms regulating such seasonal changes in physiology and behavior are not fully understood. Here, we report the photoperiodic regulation of the insulin receptor (IR) gene in the infundibular nucleus (anatomically homologous to the mammalian arcuate nucleus) of the Japanese quail.

View Article and Find Full Text PDF

The molecular mechanism underlying photoperiodism is not well understood in any organism. Long-day-induced conversion of prohormone T(4) to bioactive T(3) within the mediobasal hypothalamus (MBH) is critical for the photoperiodic regulation of reproduction. However, because thyroidectomy does not completely block the photoperiodic response in some species, the existence of a thyroid hormone-independent regulatory mechanism appears certain.

View Article and Find Full Text PDF

MalphaNP acid (+/-)-1, 2-methoxy-2-(1-naphthyl)propionic acid, was enantioresolved by the use of phenylalaninol (S)-(-)-4; a diastereomeric mixture of amides formed from acid (+/-)-1 and amine (S)-(-)-4 was easily separated by fractional recrystallization and/or HPLC on silica gel, yielding amides (R;S)-(-)-5a and (S;S)-(+)-5b. Their absolute configurations were determined by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-5a was converted to oxazoline (R;S)-(+)-8a, from which enantiopure MalphaNP acid (R)-(-)-1 was recovered.

View Article and Find Full Text PDF

Photorefractoriness is the insensitivity of gonadal development to the stimulatory effects of long photoperiods in birds and to the inhibitory effects of short photoperiods in small mammals. Its molecular mechanism remains unknown. Recently, it has been shown that reciprocal expression of thyroid hormone-activating enzyme [type 2 deiodinase (Dio2)] and -inactivating enzyme [type 3 deiodinase (Dio3)] genes in the mediobasal hypothalamus is critical for photoperiodically induced gonadal growth.

View Article and Find Full Text PDF

The molecular basis of seasonal or nonseasonal breeding remains unknown. Although laboratory rats are generally regarded as photoperiod-insensitive species, the testicular weight of the Fischer 344 (F344) strain responds to photoperiod. Recently, it was clarified that photoperiodic regulation of type 2 iodothyronine deiodinase (Dio2) in the mediobasal hypothalamus (MBH) is critical in photoperiodic gonadal regulation.

View Article and Find Full Text PDF

In most organisms living in temperate zones, reproduction is under photoperiodic control. Although photoperiodic time measurement has been studied in organisms ranging from plants to vertebrates, the underlying molecular mechanism is not well understood. The Japanese quail (Coturnix japonica) represents an excellent model to study this problem because of the rapid and dramatic photoperiodic response of its hypothalamic-pituitary-gonadal axis.

View Article and Find Full Text PDF

In most animals that live in temperate regions, reproduction is under photoperiodic control. In long-day breeders such as Japanese quail and Djungarian hamsters, type 2 deiodinase (Dio2) plays an important role in the mediobasal hypothalamus, catalyzing the conversion of prohormone T4 to bioactive T3 to regulate the photoperiodic response of the gonads. However, the molecular basis for seasonal reproduction in short-day breeders remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to understand how living things keep track of day length, and they've found that thyroid hormones are important for this.
  • In their experiments with Japanese quail, they discovered that when the birds are in long daylight, a certain thyroid hormone level goes up, but another enzyme that normally lowers this hormone level goes down.
  • These changes in gene levels happen very early when the quail first experience a long day, suggesting that they help control the amount of thyroid hormone in the part of the brain that responds to day length.
View Article and Find Full Text PDF

The molecular mechanisms responsible for seasonal time measurement have yet to be fully described. Recently, we used differential analysis to identify that the type 2 iodothyronine deiodinase (Dio2) gene is responsible for the photoperiodic response of gonads in Japanese quail. It was found that expression of Dio2 in the mediobasal hypothalamus is induced by light and that T(3) content in the mediobasal hypothalamus increased under long day conditions.

View Article and Find Full Text PDF

Prolactin (PRL) secretion is regulated by photoperiod in mammals and birds. In mammals, the pars tuberalis (PT) in the pituitary is involved in the regulation of photoperiodic regulation of PRL secretion. In birds, however, hypothalamic vasoactive intestinal peptide is implicated in PRL secretion, and physiological roles of the avian PT remain unknown.

View Article and Find Full Text PDF

Reproduction of many temperate zone birds is under photoperiodic control. The Japanese quail is an excellent model for studying the mechanism of photoperiodic time measurement because of its distinct and marked response to changing photoperiods. Studies on this animal have suggested that the mediobasal hypothalamus (MBH) is an important centre controlling photoperiodic time measurement.

View Article and Find Full Text PDF

Avian circadian rhythms are regulated by a multiple oscillatory system consisting of the pineal, the suprachiasmatic nucleus (SCN) and the eye. In the present study, ontogeny of circadian clock in the pineal and the SCN of chick embryo was examined using Per2 expression as a marker. A daily rhythmicity of Per2 expression was first detectable at embryonic day (ED) 18 in the pineal and at ED 16 in the SCN under light-dark (LD) cycles.

View Article and Find Full Text PDF

In birds, the mediobasal hypothalamus (MBH) including the infundibular nucleus, inferior hypothalamic nucleus, and median eminence is considered to be an important center that controls the photoperiodic time measurement. Here we show expression patterns of circadian clock genes in the MBH, putative suprachiasmatic nucleus (SCN), and pineal gland, which constitute the circadian pacemaker under various light schedules. Although expression patterns of clock genes were different between long and short photoperiod in the SCN and pineal gland, the results were not consistent with those under night interruption schedule, which causes testicular growth.

View Article and Find Full Text PDF