Publications by authors named "Miwa Kawasaki"

Epithelial cells organize an ordered array of non-centrosomal microtubules, the minus ends of which are regulated by CAMSAP3. The role of these microtubules in epithelial functions, however, is poorly understood. Here, we show that the kidneys of mice in which Camsap3 is mutated develop cysts at the proximal convoluted tubules (PCTs).

View Article and Find Full Text PDF

Microtubules (MTs) regulate numerous cellular processes, but their roles in brain morphogenesis are not well known. Here, we show that CAMSAP3, a non-centrosomal microtubule regulator, is important for shaping the lateral ventricles. In differentiating ependymal cells, CAMSAP3 became concentrated at the apical domains, serving to generate MT networks at these sites.

View Article and Find Full Text PDF

Introduction: The basement membrane (BM) is a sheet-like extracellular matrix (ECM) lining the basal side of epithelial and endothelial cells. The molecular composition of the BM diversifies as embryonic development proceeds, providing optimized microenvironments for individual cell types. In post-implantation stage embryos, the embryonic BMs are essential for differentiation of the epiblast, a layer of multipotent embryonic stem cells, and subsequent embryogenesis.

View Article and Find Full Text PDF

Polarized epithelial cells exhibit a characteristic array of microtubules that are oriented along the apicobasal axis of the cells. The minus-ends of these microtubules face apically, and the plus-ends face toward the basal side. The mechanisms underlying this epithelial-specific microtubule assembly remain unresolved, however.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have the potential to provide an infinite source of tissues for regenerative medicine. Although defined xeno-free media have been developed, culture conditions for reliable propagation of hESCs still require considerable improvement. Here we show that recombinant E8 fragments of laminin isoforms (LM-E8s), which are the minimum fragments conferring integrin-binding activity, promote greater adhesion of hESCs and hiPSCs than do Matrigel and intact laminin isoforms.

View Article and Find Full Text PDF

Vitronectin (VN) is an extracellular matrix protein abundantly present in blood and a wide variety of tissues and plays important roles in a number of biological phenomena mainly through its binding to αV integrins. However, its definite function in the brain remains largely unknown. Here we report the identification of telencephalin (TLCN/ICAM-5) as a novel VN receptor on neuronal dendrites.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs.

View Article and Find Full Text PDF

Dendritic filopodia are long, thin, actin-rich, and dynamic protrusions that are thought to play a critical role as a precursor of spines during neural development. We reported previously that a telencephalon-specific cell adhesion molecule, telencephalin (TLCN) [intercellular adhesion molecule-5 (ICAM-5)], is highly expressed in dendritic filopodia, facilitates the filopodia formation, and slows spine maturation. Here we demonstrate that TLCN cytoplasmic region binds ERM (ezrin/radixin/moesin) family proteins that link membrane proteins to actin cytoskeleton.

View Article and Find Full Text PDF