Elevated concentrations of manganese (Mn) and zinc (Zn) in water bodies can disrupt ecosystems and damage aquatic life. However, the mechanisms underlying the removal of Mn and Zn under dynamic conditions and the optimal hydraulic retention time (HRT) for passive treatment plants remain unclear. Here, a pilot-scale passive treatment system for the removal of Mn and Zn from legacy mine drainage in northern Japan is proposed; it was performed at circumneutral pH for 152 days.
View Article and Find Full Text PDFUnderstanding seasonal groundwater quality changes in temperate continental climate waste rock dumps (WRDs) is necessary for sustainable environmental risk prevention and legacy mine contamination management. Therefore, we conducted a field investigation of a WRD to determine the mechanisms controlling its groundwater quality dynamics. The research aimed to understand the impact of seasonal changes on heavy metals released from the WRD.
View Article and Find Full Text PDF