Publications by authors named "Mitun Das"

Both cell migration and osteogenic differentiation are critical for successful bone regeneration. Therefore, understanding the mechanobiological aspects that govern these two processes is essential in designing effective scaffolds that promote faster bone regeneration. Studying these two factors at different locations is necessary to manage bone regeneration in various sections of a scaffold.

View Article and Find Full Text PDF

Biodegradable magnesium (Mg) based implants have considerable interest in the biomedical field as their use nullifies the necessity for implant removal surgery and avoids the long-standing adverse reaction of permanent bioimplants. The degradation resistance and biocompatibility of the Mg alloys can be improved by coating them with a suitable thin film. Here, thin films of niobium and niobium oxide were developed on the AZ31B Mg alloy by sputtering technique and their biocompatibility and corrosion resistance was examined.

View Article and Find Full Text PDF

Magnesium (Mg) and its alloys have been widely explored as a potential biodegradable implant material. However, the fast degradation of Mg-based alloys under physiological environment has hindered their widespread use for implant applications till date. The present review focuses on in vitro and in vivo degradation of biodegradable Mg alloys, and preventive measures for biomedical applications.

View Article and Find Full Text PDF

The aim of our study is to investigate the effect of boron with different ratios in Ti-Cu-Pd-Zr metallic glass (MG) matrix (Ti-Cu-Pd-Zr:B) fabricated by Pulsed Laser Deposition (PLD) for biomedical implants. The Ti based Thin Film Metallic Glasses (TFMGs) in combination with boron (in different atomic %) was assessed in attaining the combined properties, like outstanding corrosion resistant properties and good biocompatibility in this work. The disordered structure and amorphous nature of the Ti-Cu-Pd-Zr:B thin films systems were achieved by the PLD process and affirmed by XRD and transmission electron microscopy.

View Article and Find Full Text PDF

Osteolysis and aseptic loosening due to wear at the articulating interfaces of prosthetic joints are considered to be the key concerns for implant failure in load-bearing orthopedic applications. In an effort to reduce the wear and processing difficulties of ultrahigh-molecular-weight polyethylene (UHMWPE), our research group recently developed high-density polyethylene (HDPE)/UHMWPE nanocomposites with chemically modified graphene oxide (mGO). Considering the importance of sterilization, this work explores the influence of γ-ray dosage of 25 kGy on the clinically relevant performance-limiting properties of these newly developed hybrid nanocomposites in vitro.

View Article and Find Full Text PDF

This work evaluates the effects of laser surface modification on Mg-Zn-Gd-Nd alloy which is a potential biodegradable material for temporary bone implant applications. The laser surface melted (LSM) samples were investigated for microstructure, wettability, surface hardness and in vitro degradation. The microstructural study was carried out using scanning and transmission electron microscopes (SEM, TEM) and the phases present were analyzed using X-ray diffraction.

View Article and Find Full Text PDF

Strontium (Sr), a mineral element present in trace in the human body, has significant effect on bone remodelling. Sr containing ceramics have huge potential to heal bone defects and improve osseointegration of implants. In this study, perovskite oxide - strontium titanate (SrTiO) was synthesized and explored its potential for biomedical applications.

View Article and Find Full Text PDF

Fluorine substituted hydroxyapatite (FAp) with different degree of fluorine (F) substitution, has been synthesized using hydrothermal synthesis method. In the present work, as synthesized powders were consolidated by sintering at 1200 °C in air for 1 h. The sintered specimens were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) for phase analysis.

View Article and Find Full Text PDF

Direct laser deposition (DLD) is one of the rapidly emerging laser-based additive manufacturing (LBAM) process. Laser Engineered Net Shaping (LENS) is one such DLD technique which was employed to fabricate one of the widely used Ti-6Al-4V implant material with enhanced surface-related properties compared to the wrought sample (commercially available). Wear and corrosion behavior of LENS fabricated Ti-6Al-4V (L-Ti64) was characterized using low-frequency reciprocatory wear tester and potentiostat.

View Article and Find Full Text PDF

Two distinct surface topographies consisting of micro- and nano-surface were developed using laser texturing (LT) and anodization process respectively and their effect on the surface-related properties of Ti-6Al-4V fabricated using Laser Engineered Net Shaping (LENS) were determined. The topographies developed using laser texturing (25, 50 and 75% overlap) were examined using 3D profilometer, whereas, Field Emission Scanning Electron Microscopy (FE-SEM) was used to analyze Titania NanoTubes (TNT) formed using anodization. Though all the surface modified specimens exhibited hydrophilic behavior, least contact angle values were observed for the specimen surface modified with TNT.

View Article and Find Full Text PDF

Synthesis of strontium-doped hydroxyapatite from Mercenaria clam shells has been carried out by hydrothermal method. The doping of bioceramic, processed from biogenic resources is mostly unexplored. The objective is to understand the effect of strontium (Sr) incorporation on phase stability, sintering behaviour, mechanical properties and cytotoxicity of hydroxyapatite (HAp) derived from clam shells.

View Article and Find Full Text PDF

Here we report for the very first time the synthesis of 100% phase pure calcium silicate nanoparticles (CSNPs) of the α-wollastonite phase without using any surfactant or peptizer at the lowest ever reported calcination temperature of 850 °C. Further, the phase purity is confirmed by quantitative phase analysis. The nano-network like microstructure of the CSNPs is characterized by FTIR, Raman, XRD, FESEM, TEM, TGA, DSC etc.

View Article and Find Full Text PDF

Plasma nitriding of the Ti-6Al-4V alloy (TA) sample was carried out in a plasma reactor with a hot wall vacuum chamber. For ease of comparison these plasma nitrided samples were termed as TAPN. The TA and TAPN samples were characterized by XRD, Optical microscopy, FESEM, TEM, EDX, AFM, nanoindentation, micro scratch, nanotribology, sliding wear resistance evaluation and in vitro cytotoxicity evaluation techniques.

View Article and Find Full Text PDF

Medical grade 316L stainless steel was laser surface melted (LSM) using continuous wave Nd-YAG laser in argon atmosphere at 1 and 5 mm/s. The treated surfaces were characterized using electron backscatter diffraction to study the influence of top surface crystallographic orientation and type of grain boundaries on corrosion resistance, wettability, and biocompatibility. The laser scan velocity was found to have a marginal influence on the surface roughness and the type of grain boundaries.

View Article and Find Full Text PDF

AISI 316L is a well known biocompatible, austenitic stainless steel (SS). It is thus a bio-steel. Considering its importance as a bio-prosthesis material here we report the plasma nitriding of AISI 316L (SS) followed by its microstructural and nanotribological characterization.

View Article and Find Full Text PDF

In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes.

View Article and Find Full Text PDF

Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing.

View Article and Find Full Text PDF

The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope.

View Article and Find Full Text PDF

Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated.

View Article and Find Full Text PDF

Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfm4sd1mhh6mqti52i5iivblbj08sn8jl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once