Objectives: Arthritis is a common clinical manifestation of hereditary hemochromatosis (HH), and HH is one of a handful of conditions linked to calcium pyrophosphate deposition (CPPD) in joints. The connection between these two types of arthritis has not yet been fully elucidated. In light of new pathogenic pathways recently implicated in CPPD involving bone, we reviewed the literature on the etiology of hemochromatosis arthropathy (HHA) seeking shared pathogenic mechanisms.
View Article and Find Full Text PDFObjective: The gene TNFRSF11B encodes for osteoprotegerin (OPG) and was recently identified as the CCAL1 locus associated with familial calcium pyrophosphate deposition disease (CPDD). While the CCAL1 OPG mutation (OPG-XL) was originally believed to be a gain-of-function mutation, loss of OPG activity causes arthritis-associated osteolysis in mice, which is likely related to excess subchondral osteoclast formation and/or activity. The purpose of the present study was to further explore the effect of OPG-XL in osteoclastogenesis.
View Article and Find Full Text PDFOsteoarthritis Cartilage
June 2018
Objective: Mutations on chromosomes 5p (CCAL2) and 8q (CCAL1) have been linked to familial forms of calcium pyrophosphate deposition disease (CPDD). Mutations in the ANKH gene account for CCAL2, but the identity of CCAL1 has been elusive. Recently, a single Dutch kindred with a mutation in the Tumor Necrosis Factor Receptor Super Family member 11B (TNFRSF11B) gene coding for osteoprotegerin (OPG) was described as a gain-of-function mutation.
View Article and Find Full Text PDFThe protein product of the progressive ankylosis gene, known as ANK, is a 492-amino acid multi-pass transmembrane protein. This protein is critical for the regulation of pyrophosphate, and gain of function ANK mutations is associated with calcium pyrophosphate deposition disease. Much about the structure, function, and regulation of ANK remain unstudied.
View Article and Find Full Text PDFChondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes.
View Article and Find Full Text PDFIntroduction: Extracellular ATP (eATP) is released by articular chondrocytes under physiological and pathological conditions. High eATP levels cause pathologic calcification, damage cartilage, and mediate pain. We recently showed that stable over-expression of the progressive ankylosis gene product, ANK, increased chondrocyte eATP levels, but the mechanisms of this effect remained unexplored.
View Article and Find Full Text PDFRationale: Diabetic tendinopathy is characterized by increased stiffness, thickness, and excess calcification of affected tendons. We investigated the hypothesis that proteoglycans (PGs), as key regulators of tendon structure and calcification, are altered in diabetic tendons.
Methods: Adult porcine patellar tendons were incubated in iso-osmolar media with high or normal glucose levels for 2 weeks.