Publications by authors named "Mittleman R"

The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot be simultaneously measured with arbitrary precision, giving rise to an apparent limitation known as the standard quantum limit (SQL). Gravitational-wave detectors use photons to continuously measure the positions of freely falling mirrors and so are affected by the SQL. We investigated the performance of the Laser Interferometer Gravitational-Wave Observatory (LIGO) after the experimental realization of frequency-dependent squeezing designed to surpass the SQL.

View Article and Find Full Text PDF

Introduction: Bardet-Biedl syndrome (BBS) is a rare genetic disease associated with hyperphagia, a pathologic insatiable hunger, due to impaired signaling in the melanocortin-4 receptor (MC4R) pathway. The impact of hyperphagia on the lives of patients with BBS and their families has not been fully characterized.

Methods: Patients with BBS or their caregivers who participated in clinical trials of the MC4R agonist setmelanotide (NCT03013543 and NCT03746522) were included in this qualitative study.

View Article and Find Full Text PDF
Article Synopsis
  • Impaired cilial signaling in the MC4R pathway is linked to obesity in patients with Bardet-Biedl and Alström syndromes, prompting a study on the weight-loss effects of setmelanotide in these groups.
  • The study was a multicenter, double-blind, placebo-controlled trial involving 38 patients over 14 weeks, followed by 52 weeks of open-label treatment, assessing the impact of setmelanotide on body weight.
  • Results indicated that 32.3% of patients aged 12 years or older with Bardet-Biedl syndrome experienced at least a 10% weight reduction after 52 weeks on setmelanotide, with skin hyperpigmentation and injection
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates compact binary coalescences with at least one component mass between 0.2 and 1.0 solar masses using data from Advanced LIGO and Advanced Virgo detectors over six months in 2019, but they found no significant gravitational wave candidates.
  • The analysis leads to an upper limit on the merger rate of subsolar binaries ranging from 220 to 24,200 Gpc⁻³ yr⁻¹, based on the detected signals’ false alarm rate.
  • The researchers use these limits to set new constraints on two models for subsolar-mass compact objects: primordial black holes (suggesting they make up less than 6% of dark matter) and
View Article and Find Full Text PDF

High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector.

View Article and Find Full Text PDF

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection.

View Article and Find Full Text PDF

The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales.

View Article and Find Full Text PDF

Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers).

View Article and Find Full Text PDF

Importance: Heart failure with preserved ejection fraction (HFpEF) is often characterized by nitric oxide deficiency.

Objective: To evaluate the efficacy and adverse effects of praliciguat, an oral soluble guanylate cyclase stimulator, in patients with HFpEF.

Design, Setting, And Participants: CAPACITY HFpEF was a randomized, double-blind, placebo-controlled, phase 2 trial.

View Article and Find Full Text PDF

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.

View Article and Find Full Text PDF
Article Synopsis
  • On May 21, 2019, Advanced LIGO and Virgo detected a significant gravitational-wave signal known as GW190521, indicating a high probability event with a low chance of false alarms.
  • The signal suggests it resulted from the merger of two black holes, one around 85 solar masses and the other about 66 solar masses, with the primary black hole likely being an intermediate mass black hole.
  • The source of the merger is estimated to be about 5.3 billion light-years away, and the rate of similar black hole mergers is estimated to be about 0.13 mergers per billion cubic parsecs per year.
View Article and Find Full Text PDF

The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light, is being used to improve the shot-noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50  Hz.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is a significant cause of morbidity and mortality worldwide. Exercise intolerance is the main symptom of HFpEF and is associated with a poor quality of life and increased mortality. Currently, there are no approved medications for the treatment of HFpEF.

View Article and Find Full Text PDF
Article Synopsis
  • Refractory GERD affects many patients, with about 30% not finding relief from traditional PPI therapy; researchers tested a new treatment called IW-3718 alongside PPIs.
  • In a double-blind trial of 280 patients, those taking higher doses of IW-3718 (1500 mg) saw a significant reduction in heartburn severity and regurgitation compared to those on placebo.
  • The treatment was generally well tolerated, with constipation being the most common mild side effect, and no serious drug-related adverse events reported.
View Article and Find Full Text PDF

The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the existence of subsolar mass ultracompact objects by analyzing data from Advanced LIGO's second observing run and includes the impact of spin on gravitational waves.
  • No suitable gravitational-wave candidates were found for binaries with at least one component between 0.2 and 1.0 solar masses, leading to significant constraints on their binary merger rates.
  • The findings suggest that such ultracompact objects likely do not form through conventional stellar evolution, and they outline how these constraints on merger rates can be applied to different black hole population models that predict subsolar mass binaries.
View Article and Find Full Text PDF

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.

View Article and Find Full Text PDF

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.

View Article and Find Full Text PDF

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2  M_{⊙}-1.0  M_{⊙} using data taken between September 12, 2015 and January 19, 2016.

View Article and Find Full Text PDF

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii.

View Article and Find Full Text PDF

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources.

View Article and Find Full Text PDF

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy.

View Article and Find Full Text PDF

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations.

View Article and Find Full Text PDF
Article Synopsis
  • * The analysis focused on detecting continuous signals from pulsars and did not depend on any specific gravity theory.
  • * After examining data from advanced LIGO, we found no signs of these gravitational waves, but established upper limits for scalar and vector strains that are similar to existing limits for tensor strain.
View Article and Find Full Text PDF

This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass.

View Article and Find Full Text PDF