Publications by authors named "Mitthumsiri W"

Article Synopsis
  • - On October 9, 2022, LHAASO detected a significant afterglow from the gamma-ray burst 221009A, achieving record photon statistics in the TeV energy range.
  • - This observation allowed researchers to test the idea of Lorentz invariance violation (LIV), which is related to faster-than-light travel predictions in some quantum gravity theories.
  • - The study established that the energy scales for LIV effects are significantly higher than previously thought, with new lower limits being 10 times the Planck energy for linear effects and 6×10^{-8} times the Planck energy for quadratic effects, improving earlier constraints by 5-7 times.
View Article and Find Full Text PDF

In this Letter we try to search for signals generated by ultraheavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible γ rays by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of the LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter that have low fluxes of astrophysical γ-ray background while having large amount of dark matter.

View Article and Find Full Text PDF

We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at 3.

View Article and Find Full Text PDF

The diffuse Galactic γ-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this Letter, we report the measurements of diffuse γ rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15° View Article and Find Full Text PDF

Some gamma-ray bursts (GRBs) have a tera-electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory (LHAASO) of the bright GRB 221009A, which serendipitously occurred within the instrument's field of view. More than 64,000 photons >0.

View Article and Find Full Text PDF

The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g.

View Article and Find Full Text PDF

Recently, the LHAASO Collaboration published the detection of 12 ultrahigh-energy γ-ray sources above 100 TeV, with the highest energy photon reaching 1.4 PeV. The first detection of PeV γ rays from astrophysical sources may provide a very sensitive probe of the effect of the Lorentz invariance violation (LIV), which results in decay of high-energy γ rays in the superluminal scenario and hence a sharp cutoff of the energy spectrum.

View Article and Find Full Text PDF

The Crab Nebula is a bright source of gamma rays powered by the Crab Pulsar's rotational energy through the formation and termination of a relativistic electron-positron wind. We report the detection of gamma rays from this source with energies from 5 × 10 to 1.1 peta-electron volts with a spectrum showing gradual steepening over three energy decades.

View Article and Find Full Text PDF

We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.

View Article and Find Full Text PDF

The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 10 electronvolts) indicates the existence of the so-called PeVatrons-cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation.

View Article and Find Full Text PDF

The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi -large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products.

View Article and Find Full Text PDF

Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data.

View Article and Find Full Text PDF

The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction.

View Article and Find Full Text PDF

The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars.

View Article and Find Full Text PDF

We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface.

View Article and Find Full Text PDF
Article Synopsis
  • Recent measurements from ATIC-2, CREAM, and PAMELA have revealed unexpected patterns in cosmic-ray proton and helium spectra, showing hardening above several hundred GeV and a gradual softening below this range.
  • The findings suggest a harder spectrum for helium compared to protons, which may provide insights into the origins of high-energy cosmic rays.
  • Analysis using Fermi Large Area Telescope data indicates that both single and broken power law models fit the local proton spectrum well, with indices around 2.68 and 2.61 for energies above 200 GeV.
View Article and Find Full Text PDF

Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays.

View Article and Find Full Text PDF

Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.

View Article and Find Full Text PDF

We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results.

View Article and Find Full Text PDF

Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.

View Article and Find Full Text PDF

Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected.

View Article and Find Full Text PDF

The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields.

View Article and Find Full Text PDF

A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days.

View Article and Find Full Text PDF

Dark matter (DM) particle annihilation or decay can produce monochromatic gamma rays readily distinguishable from astrophysical sources. gamma-ray line limits from 30 to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a gamma-ray line analysis, and integrated over most of the sky. We obtain gamma-ray line flux upper limits in the range 0.

View Article and Find Full Text PDF

We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission.

View Article and Find Full Text PDF