Publications by authors named "Mitsuyasu Tabo"

Therapeutic antibodies sometimes elicit anti-drug antibodies (ADAs) that can affect efficacy and safety. Engineered antibodies that contain artificial amino acid sequences are potentially highly immunogenic, but this is currently difficult to predict. Therefore, it is important to efficiently assess immunogenicity during the development of complex antibody-based formats.

View Article and Find Full Text PDF

STA551, a novel anti-CD137 switch antibody, binds to CD137 in an extracellular ATP concentration-dependent manner. Although STA551 is assumed to show higher target binding in tumor tissues than in normal tissues, quantitative detection of the target binding of the switch antibody in vivo is technically challenging. In this study, we investigated the target binding of STA551 in vivo using intravital imaging with two-photon microscopy.

View Article and Find Full Text PDF

Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay.

View Article and Find Full Text PDF

We validated a motion field imaging (MFI) assay with human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) as a model to assess multiple cardiac liabilities by comparing the guinea-pig Langendorff heart with hiPS-CMs using 4 reference compounds and 9 internal compounds. We investigated repolarization duration, beating rate (BR), conduction speed, contractility, and inhibitory profile of three cardiac ion channels: hERG, Cav1.2, and Nav1.

View Article and Find Full Text PDF

Monoclonal antibody (mAb) drugs offer a number of valuable treatments. Many newly developed mAb drugs include artificial modification of amino acid sequences from human origin, which may cause higher immunogenicity to induce anti-drug antibodies (ADA). If the immunogenicity of a new candidate can be understood in the nonclinical phase, clinical studies will be safer and the success rate of development improved.

View Article and Find Full Text PDF

We used motion field imaging to characterize the conduction and contraction of a sheet of cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs). A hiPS-CMs sheet of 2.8 mm × 2.

View Article and Find Full Text PDF

To detect potential risk of severe cytokine release syndrome, in vitro assay formats with human cells have been developed. The two major testing platforms are a combination of whole blood with aqueous-phase test articles (whole blood cytokine assay, WBCA) and peripheral blood mononuclear cells with solid-phase articles (PBMC assay). Significant induction of cytokines was seen in both assays after treatment with a widely used control agent, TGN1412 or its analog CD28SA, but the WBCA cytokine profile differed from what was expected from clinical experience.

View Article and Find Full Text PDF

After the life-threatening cytokine release syndrome (CRS) occurred in the clinical study of the anti-CD28 monoclonal antibody (mAb) TGN1412, in vitro cytokine release assays using human blood cells have been proposed for non-clinical evaluation of the potential risk of CRS. Two basic assay formats are frequently used: human peripheral blood mononuclear cells (PBMC) with immobilized mAbs, and whole blood with aqueous mAbs. However, the suitability of the whole blood cytokine assay (WBCA) has been questioned, because an unrealistically large sample size would be required to detect the potential risk of CRS induced by TGN1412, which has low sensitivity.

View Article and Find Full Text PDF

Substituting a carbon atom with a nitrogen atom (nitrogen substitution) on an aromatic ring in our leads 11a and 13g by applying nitrogen scanning afforded a set of compounds that improved not only the solubility but also the metabolic stability. The impact after nitrogen substitution on interactions between a derivative and its on- and off-target proteins (Raf/MEK, CYPs, and hERG channel) was also detected, most of them contributing to weaker interactions. After identifying the positions that kept inhibitory activity on HCT116 cell growth and Raf/MEK, compound 1 (CH5126766/RO5126766) was selected as a clinical compound.

View Article and Find Full Text PDF

A facile methodology effective in obtaining a set of compounds monofluorinated at various positions (fluorine scan) by chemical synthesis is reported. Direct and nonselective fluorination reactions of our lead compound 1a and key intermediate 2a worked efficiently to afford a total of six monofluorinated derivatives. All of the derivatives kept their physicochemical properties compared with the lead 1a and one of them had enhanced Raf/MEK inhibitory activity.

View Article and Find Full Text PDF

Anti-angiogenic drugs that target Vascular Endothelial Growth Factor (VEGF) signaling pathways caused hypertension as an adverse effect in clinical studies. Since the hypertension may limit the benefit provided for patients, the demand for non-clinical research that predicts the clinical risk of the hypertension has risen greatly. To clarify whether non-clinical research using rats can appropriately estimate the clinical risk of hypertension caused by VEGF signal inhibitors, we investigated the hemodynamic effects and pharmacokinetics (PK) of the VEGF signal inhibitors cediranib (0.

View Article and Find Full Text PDF

Introducing a sulfamide moiety to our coumarin derivatives afforded enhanced Raf/MEK inhibitory activity concomitantly with an acceptable PK profile. Novel sulfamide 17 showed potent HCT116 cell growth inhibition (IC50=8 nM) and good PK profile (bioavailability of 51% in mouse), resulting in high in vivo antitumor efficacy in the HCT116 xenograft (ED50=4.8 mg/kg).

View Article and Find Full Text PDF

Our previous study has shown that the corrected QT (QTc) interval of the electrocardiogram is longer during the dark period than during the light period in telemetered common marmosets. In the present study, we investigated the involvement of sympathetic and parasympathetic nervous activities in the changes of QTc interval associated with the light-dark cycle.Telemetry transmitters were implanted in six common marmosets to continuously record the electrocardiogram.

View Article and Find Full Text PDF

Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs) hold great promise for development of in vitro research tools to assess cardiotoxicity, including QT prolongation. In the present study, we aimed to clarify the electrophysiological/pharmacological characteristics of hiPS-CMs using the patch-clamp technique. The hiPS cells were differentiated into beating cardiomyocytes by the embryoid body method.

View Article and Find Full Text PDF

The aims of this study were to determine a suitable method to correct the ventricular repolarization period against the RR interval in isolated perfused Langendorff guinea pig heart and to clarify the reliability of this model using several drugs. QT and RR intervals from an electrocardiogram and the epicardial monophasic action potential duration (MAP(90)) were measured. Two drugs clinically known to be QT-prolonging (E-4031, moxifloxacin) and two known to be non-QT-prolonging (verapamil, zatebradine) were used for the study.

View Article and Find Full Text PDF

Introduction: Moxifloxacin is the most widely used positive reference agent in clinical cardiac repolarization studies, but it has not been characterized in common marmosets which are uniquely suited to studies in early-stage development due to their small size and minimal test article requirements. The purpose of this study was to evaluate the sensitivity of the common marmoset to detect moxifloxacin-associated QT interval prolongation.

Methods: Eight telemetered common marmosets were monitored for 24 h following oral administration of moxifloxacin by gavage at 0, 10, 30, and 100 mg/kg using a Latin square design.

View Article and Find Full Text PDF

Introduction: QT intervals are strongly influenced by preceeding heart rate history and are also characterized by rate-independent variability, leading to difficulty in precise rate-correction of the raw QT interval. The present study elucidates a novel analytical method that effectively addresses this problematic phenomenon in telemetered common marmosets.

Methods: ECGs were collected from telemetered common marmosets (male and female) and analyzed by computerized algorithms.

View Article and Find Full Text PDF

The aim of this study was to assess the cardiovascular effect of MA-2029, a selective motilin receptor antagonist highly expected for the treatment of irritable bowel syndrome (IBS). MA-2029 inhibited the human ether-a-go-go-related gene (hERG) current at 100 microg/ml, but shortened action potential duration (APD) in isolated guinea pig papillary muscles at 10 and 100 microg/ml and the corrected QT (QTc) interval after oral administration of 30 and 300 mg/kg in conscious telemetered dogs. The discrepancy was probably caused by blockade of the Ca(2+) channel because MA-2029 inhibited the Ca(2+) current in isolated guinea pig myocytes.

View Article and Find Full Text PDF

Drug-induced QT interval prolongation is a critical issue in development of new chemical entities, so the pharmaceutical industry needs to evaluate risk as early as possible. Common marmosets have been in the limelight in early-stage development due to their small size, which requires only a small amount of test drug. The purpose of this study was to determine the utility of telemetered common marmosets for predicting drug-induced QT interval prolongation.

View Article and Find Full Text PDF

Mitemcinal (GM-611) is a novel erythromycin-derived prokinetic agent that acts as an agonist at the motilin receptor. We investigated the QT-prolonging effects of mitemcinal using a halothane-anesthetized canine model. Intravenous administration of mitemcinal at doses of more than 8.

View Article and Find Full Text PDF

Mitemcinal (GM-611) is a novel erythromycin-derived prokinetic agent that acts as an agonist at the motilin receptor. Erythromycin has shown QT prolongation and torsades de pointes (TdP) in humans and cisapride, a second class of prokinetic agents typified by the 5-HT(4) receptor agonist, has been terminated due to TdP. In this study an extended series of safety pharmacology protocols and evaluations have been undertaken to assess the potential risk of mitemcinal on QT prolongation or proarrhythmic effects.

View Article and Find Full Text PDF

Introduction: Drug-induced QT interval prolongation has been one of the critical issues for developing new chemical entities and pharmaceutical companies need to evaluate the risk early in the development stage. At such stage, guinea pigs are appropriate due to their small size requiring only small amounts of test drugs. The purpose of this study was to determine the utility of guinea pig monophasic action potential (MAP) using 12 reference drugs in order to clarify prediction of the QT interval prolonging risk.

View Article and Find Full Text PDF

Several QT correction (QTc) formulas have been used for assessing the QT liability of drugs. However, they are known to under- and over-correct the QT interval and tend to be specific to species and experimental conditions. The purpose of this study was to determine a suitable formula for halothane-anesthetized dogs highly sensitive to drug-induced QT interval prolongation.

View Article and Find Full Text PDF

Certain compounds that prolong QT interval in humans have little or no effect on action-potential (AP) duration used traditionally, but they inhibit rapidly-activated-delayed-rectifier potassium currents (IKr) and/or human ether-a-go-go-related gene (hERG) currents. In this study using isolated guinea-pig papillary muscles, we investigated whether new parameters in AP assays can detect the inhibitory effects of various compounds on IKr and/or hERG currents with high sensitivity. The difference in AP duration between 60% and 30% repolarization, 90% and 60% repolarization, and 90% and 30% repolarization (APD30-60, APD60-90, and APD30-90, respectively) were calculated as the new parameters.

View Article and Find Full Text PDF

To construct a non-clinical database for drug-induced QT interval prolongation, the electrophysiological effects of 11 positive and 10 negative compounds on action potentials (AP) in guinea-pig papillary muscles were investigated in a multi-site study according to a standard protocol. Compounds with a selective inhibitory effect on the rapidly activated delayed rectifier potassium current (IKr) prolonged action potential duration at 90% repolarization (APD90) in a concentration-dependent manner, those showing Ca2+ current (ICa) inhibition shortened APD30, and those showing Na+ current (INa) inhibition decreased action potential amplitude (APA) and Vmax. Some of the mixed ion-channel blockers showed a bell-shaped concentration-response curve for APD90, probably due to their blockade of INa and/or ICa, sometimes leading to a false-negative result in the assay.

View Article and Find Full Text PDF