Publications by authors named "Mitsutake Oshikiri"

The structure and configuration of reaction centers, which dominantly govern the catalytic behaviors, often undergo dynamic transformations under reaction conditions, yet little is known about how to exploit these features to favor the catalytic functions. Here, we demonstrate a facile light activation strategy over a TiO-supported Cu catalyst to regulate the dynamic restructuring of Cu active sites during low-temperature methanol steam reforming. Under illumination, the thermally deactivated Cu/TiO undergoes structural restoration from inoperative CuO to the originally active metallic Cu caused by photoexcited charge carriers from TiO, thereby leading to substantially enhanced activity and stability.

View Article and Find Full Text PDF

Methanol steam reforming (MSR) is a promising reaction that enables efficient production and safe transportation of hydrogen, but it requires a relatively high temperature to achieve high activity, leading to large energy consumption. Here, we report a plasmonic ZnCu alloy catalyst, consisting of plasmonic Cu nanoparticles with surface-deposited Zn atoms, for efficient solar-driven MSR without additional thermal energy input. Experimental results and theoretical calculations suggest that Zn atoms act not only as the catalytic sites for water reduction with lower activation energy but also as the charge transfer channel, pumping hot electrons into water molecules and subsequently resulting in the formation of electron-deficient Cu for methanol activation.

View Article and Find Full Text PDF

Photoreduction of CO to fuels offers a promising strategy for managing the global carbon balance using renewable solar energy. But the decisive process of oriented photogenerated electron delivery presents a considerable challenge. Here, we report the construction of intermolecular cascaded π-conjugation channels for powering CO photoreduction by modifying both intramolecular and intermolecular conjugation of conjugated polymers (CPs).

View Article and Find Full Text PDF

Semiconductor photocatalysis has received much attention as a potential solution to the worldwide energy shortage and for counteracting environmental degradation. This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials. We begin with a survey of efforts to explore suitable materials and to optimize their energy band configurations for specific applications.

View Article and Find Full Text PDF

The dynamics of water molecules and the adsorption properties at the V and Y sites on the surface of the photocatalyst YVO(4) have been investigated by first principles molecular dynamics. This system has shown an excellent performance in the production of both hydrogen and oxygen in the ultraviolet region. Yet, its catalytic properties, related to the electronic structure, are poorly understood.

View Article and Find Full Text PDF

The water absorption properties at the surface of BiVO4 are attracting a great deal of attention because the system is a promising candidate as a photocatalyst operating in the visible light range. This has motivated the present investigation via first principles molecular dynamics, which has revealed that a H2O molecule is adsorbed molecularly, instead of dissociatively, at the fivefold Bi site with an adsorption energy of approximately 0.58 eV/molecule.

View Article and Find Full Text PDF