Publications by authors named "Mitsutaka Kanazawa"

In proton therapy, it is important to evaluate the field irradiated with protons and the deposited dose distribution in a patient's body. Positron emitters generated through fragmentation reactions of target nuclei can be used for this purpose. By detecting the annihilation gamma rays from the positron emitters, the annihilation gamma ray distribution can be obtained which has information about the quantities essential to proton therapy.

View Article and Find Full Text PDF

The first clinical trial with carbon beams generated from HIMAC was conducted in June 1994. The total number of patients treated as of December 2006 was in excess of 3,000. In view of the significant growth in the number of protocols, the Japanese government gave its approval for carbon-ion therapy at NIRS as an advanced medical technology in 2003.

View Article and Find Full Text PDF

In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei.

View Article and Find Full Text PDF

Heavy ion therapy using the energetic (12)C beam is successfully under way at HIMAC, Japan. The method is more advantageous than traditional radiation therapy in dose concentration owing to the Bragg peak and high relative biological effectiveness. A research study using the (11)C beam for heavy ion therapy in the future has been carried out in order to develop the capability of monitoring the dose distribution.

View Article and Find Full Text PDF

Purpose: To evaluate the potential importance of radioactive 9C-ion beam in cancer radiotherapy.

Methods And Materials: Human salivary gland (HSG) cells were exposed to a double-radiation-source 9C beam at different depths around the Bragg peak. Cell survival fraction was determined by standard clonogenic assay.

View Article and Find Full Text PDF

An advantage of heavy-ion therapy is its good dose concentration. A limit for full use of this desirable feature comes from range ambiguities in treatment planning. The treatment planning is based on X-ray CT measurements, and the range ambiguities are mainly due to an error in calibration of the CT number.

View Article and Find Full Text PDF

The (10)C and (11)C beam stop position in a homogeneous phantom was measured using the range verification system in HIMAC. This system was developed to clear uncertainty of beam range within the patient body in heavy ion radiotherapy. In this system, a target is irradiated with RI beams ((11)C or (10)C) and the distribution of the beam end-points are measured by a positron camera.

View Article and Find Full Text PDF

It is desirable to reduce range ambiguities in treatment planning for making full use of the major advantage of heavy-ion radiotherapy, that is, good dose localization. A range verification system using positron emitting beams has been developed to verify the ranges in patients directly. The performance of the system was evaluated in beam experiments to confirm the designed properties.

View Article and Find Full Text PDF