Epigenome editing offers ethical advantages with non-inheritable gene expression control. However, concerns arise regarding potential transgenerational effects in humans. Ethical and regulatory evaluation is crucial, considering recent advancements and enhanced understanding of transgenerational epigenetics in both mammals and humans.
View Article and Find Full Text PDFThe transplantation of muscle progenitor cells (MuPCs) differentiated from human induced pluripotent stem cells (hiPSCs) is a promising approach for treating skeletal muscle diseases such as Duchenne muscular dystrophy (DMD). However, proper purification of the MuPCs before transplantation is essential for clinical application. Here, by using MYF5 hiPSC reporter lines, we identified two markers for myogenic cell purification: CDH13, which purified most of the myogenic cells, and FGFR4, which purified a subset of MuPCs.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is an inherited muscle disease caused by misexpression of the DUX4 gene in skeletal muscle. DUX4 is a transcription factor, which is normally expressed in the cleavage-stage embryo and regulates gene expression involved in early embryonic development. Recent studies revealed that DUX4 also activates the transcription of repetitive elements such as endogenous retroviruses (ERVs), mammalian apparent long terminal repeat (LTR)-retrotransposons and pericentromeric satellite repeats (Human Satellite II).
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy type2 (FSHD2), which constitutes approximately 5% of total FSHD cases and develops the same symptoms as FSHD type 1 (FSHD1), is caused by various mutations in genes including SMCHD1. We report the generation and characterization of an iPSC line derived from an FSHD2 patient carrying the SMCHD1 p.Lys607Ter mutation and its gene-corrected iPSC line which are free from transgene.
View Article and Find Full Text PDFDouble homeobox 4 (DUX4), the causative gene of facioscapulohumeral muscular dystrophy (FSHD), is ectopically expressed in the skeletal muscle cells of FSHD patients because of chromatin relaxation at 4q35. The diminished heterochromatic state at 4q35 is caused by either large genome contractions [FSHD type 1 (FSHD1)] or mutations in genes encoding chromatin regulators, such as SMCHD1 [FSHD type 2 (FSHD2)]. However, the mechanism by which DUX4 expression is regulated remains largely unknown.
View Article and Find Full Text PDF