Publications by authors named "Mitsuru Osaki"

In general, it is known that extreme climatic conditions such as El Niño and positive Indian Ocean Dipole (IOD+) cause prolonged drought in Indonesia's tropical peatlands so that groundwater levels (GWL) drop and peat is prone to fire. However, 27 years of GWL measurements in Central Kalimantan peat forests show the opposite condition, where the lowest GWL occurs several weeks before El Niño and after IOD+ reaches its peaks. We show that the dropped sea surface temperature anomaly induced by anomalously easterly winds along the southern Java-Sumatra occurs several weeks before the GWL drop to the lowest value.

View Article and Find Full Text PDF

We have pragmatically but accurately evaluated the natural capital of a small northern town, Shimokawa, Hokkaido, Japan. The key industries are forestry, wood manufacturing, and agriculture. From an environmental perspective, Shimokawa was nominated as a Japanese FutureCity.

View Article and Find Full Text PDF

We tested whether introducing an arbuscular mycorrhizal fungi (AMF)-host plant with a reduced P application rate could maintain soybean seeds' nutrient quality. The dynamic variation of 14 nutrients was analyzed in source and sink organs during the seed-filling stage. The AMF-host and non-AMF-host plants, sunflower and mustard, were grown as preceding crops (PCs).

View Article and Find Full Text PDF

To characterize the dynamic mobilization of heavy metals (HM) in a crop-soil system affected by cattle manure (CM) application, soybean [Glycine max L. Merr. cv.

View Article and Find Full Text PDF

High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance.

View Article and Find Full Text PDF

Soil contains various essential and nonessential elements, all of which can be absorbed by plants. Plant ionomics is the study of the accumulation of these elements (the ionome) in plants. The ionomic profile of a plant is affected by various factors, including species, variety, organ, and environment.

View Article and Find Full Text PDF

Ionomics is the study of elemental accumulation in living organisms using high-throughput elemental profiling. In the present study, we examined the ionomic responses to nutrient deficiency in maize grown in the field in long-term fertilizer trials. Furthermore, the available elements in the field soils were analyzed to investigate their changes under long-term fertilizer treatment and the ionomic relationships between plant and soil.

View Article and Find Full Text PDF

Aiming at clarifying the interactions between Cs, Sr, and other mineral elements in the genus Amaranthus, this study adopted 33 different varieties of Amaranthus and investigated the concentrations of 23 mineral elements in shoots grown in the fields of Iino in Fukushima prefecture. Significant varietal effects were detected for all elements except Se, and degree of interspecies variation was highly element dependent. Among 23 elements, amaranths were less sensitive to the accumulation of Cs and Sr than most other mineral elements to the species level.

View Article and Find Full Text PDF

In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires, and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level (GWL), and accelerate oxidative peat decomposition.

View Article and Find Full Text PDF

The white-rot fungi Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 have been shown in previous studies to have high biobleaching activity in vivo. The aim of this study was to investigate the activities and stabilities of extracellular enzymes, prepared from I.

View Article and Find Full Text PDF

The negative charge at the root surface is mainly derived from the phosphate group of phospholipids in plasma membranes (PMs) and the carboxyl group of pectins in cell walls, which are usually neutralized by calcium (Ca) ions contributing to maintain the root integrity. The major toxic effect of aluminum (Al) in plants is the inhibition of root elongation due to Al binding tightly to these negative sites in exchange for Ca. Because phospholipid and pectin concentrations decrease in roots of some plant species under phosphorus (P)-limiting conditions, we hypothesized that rice (Oryza sativa L.

View Article and Find Full Text PDF

Plant roots are complicated organs that absorb water and nutrients from the soil. Roots also play an essential role in protecting plants from attack by soil pathogens and develop a beneficial role with some soil microorganisms. Plant-derived rhizosphere proteins (e.

View Article and Find Full Text PDF

In Southeast Asia, a huge amount of peat has accumulated under swamp forests over millennia. Fires have been widely used for land clearing after timber extraction, thus land conversion and land management with logging and drainage are strongly associated with fire activity. During recent El Niño years, tropical peatlands have been severely fire-affected and peatland fires enlarged.

View Article and Find Full Text PDF

Low-molecular-weight thiol (LMWT) synthesis has been reported to be directly induced by arsenic (As) in Pteris vittata, an As hyperaccumulator. Sulphur (S) is a critical component of LMWTs. Here, the effect of As treatment on the uptake and distribution of S in P.

View Article and Find Full Text PDF

Organic matter amendment is an essential agricultural protocol to improve soil function and carbon sequestration. However, the effect of organic matter amendments on crop quality has not been well-defined. This study applied gas chromatography-mass spectrometry to investigate the metabolite profiling of mizuna ( Brassica rapa L.

View Article and Find Full Text PDF

Two field experiments were conducted to investigate the effects of previous cultivation of an arbuscular mycorrhizal (AM) host plant and manure application on the concentration of 19 mineral elements in soybean ( Glycine max L. Merr. cv.

View Article and Find Full Text PDF

The roles of low-molecular-weight thiols (LMWTs), such as glutathione and phytochelatins, in arsenic (As) tolerance and hyperaccumulation in Pteris vittata an As-hyperaccumulator fern remain to be better understood. This study aimed to thoroughly characterize LMWT synthesis in P. vittata to understand the roles played by LMWTs in As tolerance and hyperaccumulation.

View Article and Find Full Text PDF

Background: Changes in saccharide, amino acid and S-methylmethionine (SMM) concentrations and enzyme activities during the malting of barley grown with different nitrogen (N) and sulfur (S) supplementation were investigated in order to clarify their relationship with N and S fertiliser levels.

Results: Concentrations of N and S in barley grain were significantly increased by the addition of N to the culture soil. Application of N decreased the starch concentration in grain.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi benefit their host plants by supplying phosphate obtained from the soil. Polyphosphate is thought to act as the key intermediate in this process, but little is currently understood about how polyphosphate is synthesized or translocated within arbuscular mycorrhizas. Glomus sp.

View Article and Find Full Text PDF

Root mucilage is gelatinous polysaccharide-containing material exuded from the outer layers of the root cap. Although mucilage has been suggested to play several roles in plant growth, its role in mineral uptake has not been well understood. Melastoma malabathricum L.

View Article and Find Full Text PDF

Legumes are second only to cereals in their importance to humans, and study of their functional genomics of nutrition and other trace elements is crucial for agricultural production and food fortification. We describe here an ionomic screening experiment carried out to investigate the accumulation of 15 elements in shoots of mutants of Lotus japonicus, a good genetic tool for legume study.Approximately 2000 mutagenized M2 plants were cultivated in a novel low-cost high-throughput system and their elemental profiles were determined by inductively coupled plasma mass spectroscopy (ICP-MS).

View Article and Find Full Text PDF