Publications by authors named "Mitsuru Nikaido"

This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition.

View Article and Find Full Text PDF

Trichoderma reesei is a filamentous organism that secretes enzymes capable of degrading cellulose to cellobiose. The culture supernatant of T. reesei, however, lacks sufficient activity to convert cellobiose to glucose using β-glucosidase (BGL1).

View Article and Find Full Text PDF

This study examined the effects of a combined pretreatment with supercritical water and mechanochemical grinding with a ball mill on the physicochemical properties of chitin and its enzymatic degradation. Following pretreatment with a combination of supercritical water and grinding, chitin had a lower mean molecular weight, a lower crystallinity index, a lower crystallite size, greater d-spacing, weaker hydrogen bonds, and the amide group was more exposed compared with untreated chitin. These properties increased the hydrophilicity of the chitin and enhanced its enzymatic degradation.

View Article and Find Full Text PDF

The enzymatic synthesis of cellulose-like substance via a non-biosynthetic pathway has been achieved by transglycosylation in an aqueous system of the corresponding substrate, cellotriose for cellulolytic enzyme endo-acting endoglucanase I (EG I) from Hypocrea jecorina. A significant amount of water-insoluble product precipitated out from the reaction system. MALDI-TOF mass analysis showed that the resulting precipitate had a degree of polymerization (DP) of up to 16 from cellotriose.

View Article and Find Full Text PDF

The enzymatic synthesis of an α-chitin-like substance via a non-biosynthetic pathway has been achieved by transglycosylation in an aqueous system of the corresponding substrate, tri-N-acetylchitotriose [(GlcNAc)(3)] for lysozyme. A significant amount of water-insoluble product precipitated out from the reaction system. MALDI-TOFMS analysis showed that the resulting precipitate had a degree of polymerization (DP) of up to 15 from (GlcNAc)(3).

View Article and Find Full Text PDF