Publications by authors named "Mitsuru Imaizumi"

Materials to be used in the space environment have to withstand extreme conditions, particularly with respect to cosmic particle irradiation. We report robust stability and high tolerance of organolead trihalide perovskite solar cells against high-fluence electron and proton beams. We found that methylammonium and formamidinium-based lead iodide perovskite solar cells composed of TiO and a conductive polymer, as electron and hole transport materials, can survive against accumulated dose levels up to 10 and 10particles/cm of electrons (1 MeV) and protons (50 KeV), respectively, which are known to completely destroy crystalline Si-, GaAS-, and InGaP/GaAs-based solar cells in spacecraft.

View Article and Find Full Text PDF

Tandem solar cells are suited for space applications due to their high performance, but also have to be designed in such a way to minimize influence of degradation by the high energy particle flux in space. The analysis of the subcell performance is crucial to understand the device physics and achieve optimized designs of tandem solar cells. Here, the radiation-induced damage of inverted grown InGaP/GaAs/InGaAs triple-junction solar cells for various electron fluences are characterized using conventional current-voltage (I-V) measurements and time-resolved photoluminescence (PL).

View Article and Find Full Text PDF

In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless.

View Article and Find Full Text PDF

We measure the excitation-wavelength and power dependence of time-resolved photoluminescence (PL) from the top InGaP subcell in a InGaP/GaAs/Ge triple-junction solar cell. The wavelength-dependent data reveals that the PL decays are governed by charge separation. A fast single-exponential PL decay is observed at low excitation power densities, which is the charge separation under short-circuit condition.

View Article and Find Full Text PDF

World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements.

View Article and Find Full Text PDF