The creation of human liver models has long been a critical objective in academic, clinical, and pharmaceutical research, particularly for drug development, where accurate evaluation of hepatic metabolic dynamics is crucial. We have developed a bioengineered, perfused, organ-level human liver model that accurately replicates key liver functions, including metabolic activities, and protein synthesis, thus addressing some of the limitations associated with traditional liver monolayers, organoids, and matrix-embedded liver cells. Our approach utilizes liver-specific biomatrix scaffolds, prepared using an innovative protocol and fortified with matrix components that facilitate cellular interactions.
View Article and Find Full Text PDFLysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of type I collagen. This modification is critical for the formation of stable hydroxylysine-aldehyde derived collagen cross-links, thus, for the stability of collagen fibrils. Though dysfunction of LH2 causes Bruck syndrome, recessive osteogenesis imperfecta with joint contracture, the molecular mechanisms by which LH2 affects bone formation are still not well understood.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.
View Article and Find Full Text PDFDegenerative diseases affecting the nervous and skeletal systems affect the health of millions of elderly people. Optineurin (OPTN) has been associated with numerous neurodegenerative diseases and Paget's disease of bone (PDB), a degenerative bone disease initiated by hyperactive osteoclastogenesis. In this study, we found age-related increase in OPTN and nuclear factor E2-related factor 2 (NRF2) in vivo.
View Article and Find Full Text PDFHumans and Acanthamoeba polyphaga mimivirus share numerous homologous genes, including collagens and collagen-modifying enzymes. To explore this homology, we performed a genome-wide comparison between human and mimivirus using DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) and identified 52 new putative mimiviral proteins that are homologous with human proteins. To gain functional insights into mimiviral proteins, their human protein homologs were organized into Gene Ontology (GO) and REACTOME pathways to build a functional network.
View Article and Find Full Text PDFLysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2.
View Article and Find Full Text PDFLysyl hydroxylase 2 (LH2) is an enzyme that catalyzes the hydroxylation of lysine (Lys) residues in fibrillar collagen telopeptides, a critical post-translational modification for the stability of intermolecular cross-links. Though abnormal LH2 activities have been implicated in various diseases including Bruck syndrome, the molecular basis of the pathologies is still not well understood. Since LH2 null mice die at early embryonic stage, we generated LH2 heterozygous (LH2) mice in which LH2 level is significantly diminished, and characterized collagen and bone phenotypes using femurs.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and incidence rates are continuing to rise globally. HNSCC patient prognosis is closely related to the occurrence of tumor metastases, and collagen within the tumor microenvironment (TME) plays a key role in this process. Lysyl hydroxylase 2 (LH2), encoded by the Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) gene, catalyzes hydroxylation of telopeptidyl lysine (Lys) residues of fibrillar collagens which then undergo subsequent modifications to form stable intermolecular cross-links that change the biomechanical properties (i.
View Article and Find Full Text PDFCancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen's amino- and carboxy-terminal telopeptides to create stable collagen cross-links.
View Article and Find Full Text PDFCollagenous stromal accumulations predict a worse clinical outcome in a variety of malignancies. Better tools are needed to elucidate the way in which collagen influences cancer cells. Here, we report a method to generate collagenous matrices that are deficient in key post-translational modifications and evaluate cancer cell behaviors on those matrices.
View Article and Find Full Text PDFFibulin-4 is a matricellular protein required for extracellular matrix (ECM) assembly. Mice deficient in fibulin-4 ( ) have disrupted collagen and elastin fibers and die shortly after birth from aortic and diaphragmatic rupture. The function of fibulin-4 in ECM assembly, however, remains elusive.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
Intraflagellar transport (IFT) is essential for assembling primary cilia required for bone formation. Disruption of IFT frequently leads to bone defects in humans. While it has been well studied about the function of IFT in osteogenic cell proliferation and differentiation, little is known about its role in collagen biosynthesis during bone formation.
View Article and Find Full Text PDFTumor extracellular matrix has been associated with drug resistance and immune suppression. Here, proteomic and RNA profiling reveal increased collagen levels in lung tumors resistant to PD-1/PD-L1 blockade. Additionally, elevated collagen correlates with decreased total CD8 T cells and increased exhausted CD8 T cell subpopulations in murine and human lung tumors.
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) were first described over 50 years ago as potent inducers of ectopic bone formation when administrated subcutaneously. Preclinical studies have extensively examined the osteoinductive properties of BMPs in vitro and new bone formation in vivo. BMPs (BMP-2, BMP-7) have been used in orthopedics over 15 years.
View Article and Find Full Text PDFTumor progression is marked by dense collagenous matrix accumulations that dynamically reorganize to accommodate a growing and invasive tumor mass. Cancer-associated fibroblasts (CAFs) play an essential role in matrix remodeling and influence other processes in the tumor microenvironment, including angiogenesis, immunosuppression, and invasion. These findings have spawned efforts to elucidate CAF functionality at the single-cell level.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties.
View Article and Find Full Text PDFGlycosylation in type I collagen occurs as O-linked galactosyl- (G-) lesser and glucosylgalactosyl-hydroxylysine (GG-Hyl); however, its biological significance is still not well understood. To investigate the function of this modification in bone, we have generated preosteoblast MC3T3-E1 (MC)-derived clones, short hairpin (Sh) clones, in which gene expression was stably suppressed. In Sh clones, the GLT25D1 protein levels were markedly diminished in comparison to controls (MC and those transfected with the empty vector).
View Article and Find Full Text PDFDespite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1 mice.
View Article and Find Full Text PDFDrug resistance to anti-cancer agents is a major concern regarding the successful treatment of malignant tumors. Recent studies have suggested that acquired resistance to anti-epidermal growth factor receptor (EGFR) therapies such as cetuximab are in part caused by genetic alterations in patients with oral squamous cell carcinoma (OSCC). However, the molecular mechanisms employed by other complementary pathways that govern resistance remain unclear.
View Article and Find Full Text PDFCollagens represent a large family of structurally related proteins containing a unique triple-helical structure. Among them, the fibril-forming collagens are the most abundant in vertebrates providing tissues with form and stability. One of the characteristics of the fibrillar collagens is its sequential posttranslational modifications of specific lysine residues that have major effects on molecular assembly and stability of the fibrils in the extracellular space.
View Article and Find Full Text PDFFibrillar type I collagen is the most abundant structural protein in most tissues and organs. One of the unique and functionally important characteristics of collagen is sequential posttranslational modifications of lysine (Lys) residues. In the endoplasmic reticulum, hydroxylation of specific Lys occurs producing 5-hydroxylysine (Hyl).
View Article and Find Full Text PDFCovalent intermolecular cross-linking of collagen is essential for tissue stability. Recent studies have demonstrated that cyclophilin B (CypB), an endoplasmic reticulum (ER)-resident peptidyl-prolyl cis-trans isomerase, modulates lysine (Lys) hydroxylation of type I collagen impacting cross-linking chemistry. However, the extent of modulation, the molecular mechanism and the functional outcome in tissues are not well understood.
View Article and Find Full Text PDFLysyl hydroxylase 2 (LH2) is an endoplasmic reticulum (ER)-resident enzyme that catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens. This is a critical modification to determine the fate of collagen cross-linking pathway that contributes to the stability of collagen fibrils. Studies have demonstrated that the aberrant LH2 function causes various diseases including osteogenesis imperfecta, fibrosis, and cancer metastasis.
View Article and Find Full Text PDF