In the current global cooperative production mode, the distributed fuzzy flow-shop scheduling problem (DFFSP) has attracted much attention because it takes the uncertain factors in the actual flow-shop scheduling problem into account. This paper investigates a multi-stage hybrid evolutionary algorithm with sequence difference-based differential evolution (MSHEA-SDDE) for the minimization of fuzzy completion time and fuzzy total flow time. MSHEA-SDDE balances the convergence and distribution performance of the algorithm at different stages.
View Article and Find Full Text PDFUnder addressing global competition, manufacturing companies strive to produce better and cheaper products more quickly. For a complex production system, the design problem is intrinsically a daunting optimization task often involving multiple disciplines, nonlinear mathematical model, and computation-intensive processes during manufacturing process. Here is a reason to develop a high performance algorithm for finding an optimal solution to the engineering design and/or optimization problems.
View Article and Find Full Text PDFUnder the uncertain market demand and quality level, a total profit model of green closed-loop supply chain system (GCL-SCS) considering corporate environmental responsibility (CER) and government differential weight subsidy (GDWS) is constructed. Based on incentive-compatibility theory, the optimal subsidy allocation policy and green investment level were explored. Fuzzy chance-constrained programming (FCCP) is used to clarify the uncertainty factors of this model; while genetic algorithm (GA) and CPLEX are used to find and compare a calculating example's approximate optimal solution about this model.
View Article and Find Full Text PDFAs a classic problem of distributed scheduling, the distributed flow-shop scheduling problem (DFSP) involves both the job allocation and the operation sequence inside the factory, and it has been proved to be an NP-hard problem. Many intelligent algorithms have been proposed to solve the DFSP. However, the efficiency and quality of the solution cannot meet the production requirements.
View Article and Find Full Text PDF