Publications by authors named "Mitsunori Ota"

Objectives: We sought to identify associations between aldehyde dehydrogenase 2 (ALDH2), alcohol consumption, and hypertension in Japanese men.

Methods: The study participants were 1,225 male Japanese workers. We collected lifestyle information, body measurements, blood biochemical parameters, blood pressure measurements, and ALDH2 genotyping data during medical examinations conducted between March 2004 and January 2005 at a work facility and an affiliated company.

View Article and Find Full Text PDF

Cell competition is a short-range communication originally observed in Drosophila. Relatively little is known about cell competition in mammals or in non-epithelial cells. Hippo signaling and its downstream transcription factors of the Tead family, control cell proliferation and apoptosis.

View Article and Find Full Text PDF

Mutations at splicing consensus sequences have been shown to induce splicing errors such as exon skipping or cryptic splice site activation. Here, we identified eight splicing products caused by a G-to-T transversion mutation at the splice acceptor site of exon 14 of the dystrophin gene (c.1603-1G>T).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by a loss of the dystrophin protein. Control of dystrophin mRNA splicing to convert severe DMD to a milder phenotype is attracting much attention. Here we report a dystrophinopathy patient who has a point mutation in exon 31 of the dystrophin gene.

View Article and Find Full Text PDF

Purpose: Mutations in the dystrophin (DMD) gene cause Duchenne or Becker muscular dystrophy (DMD/BMD). DMD contains a retina-specific promoter in intron 29. The short R-dystrophin transcript from this promoter has a retina-specific exon 1 (R1) joined to exon 30 of the DMD gene.

View Article and Find Full Text PDF

Congenital generalized lipodystrophy (CGL), characterized by generalized absence of adipose tissue, has heterogeneous causes. Recently, a novel type of CGL complicated by muscular dystrophy was categorized as CGL4 caused by PTRF-CAVIN deficiency. However, it is unknown whether CGL4 exhibits clinical abnormalities during the infantile period.

View Article and Find Full Text PDF

Outside cells of the preimplantation mouse embryo form the trophectoderm (TE), a process requiring the transcription factor Tead4. Here, we show that transcriptionally active Tead4 can induce Cdx2 and other trophoblast genes in parallel in embryonic stem cells. In embryos, the Tead4 coactivator protein Yap localizes to nuclei of outside cells, and modulation of Tead4 or Yap activity leads to changes in Cdx2 expression.

View Article and Find Full Text PDF

Regulation of organ size is important for development and tissue homeostasis. In Drosophila, Hippo signaling controls organ size by regulating the activity of a TEAD transcription factor, Scalloped, through modulation of its co-activator protein Yki. Here, we show that mouse Tead proteins regulate cell proliferation by mediating Hippo signaling.

View Article and Find Full Text PDF

A number of signaling molecules and transcription factors play important roles in the development of the autonomic nervous system. Here, we show that mouse trunk neural crest cells can differentiate into autonomic neurons expressing mammalian achaete-scute homolog 1 (mash1), Phox2b, tyrosine hydroxylase, and/or dopamine-beta-hydroxylase in the absence of bone morphogenetic protein (BMP)-4. The expression of mash1 and Phox2b is induced even in the presence of noggin or chordin, which are inhibitors of BMP signaling.

View Article and Find Full Text PDF

During pre-implantation mouse development, embryos form blastocysts with establishment of the first two cell lineages: the trophectoderm (TE) which gives rise to the placenta, and the inner cell mass (ICM) which will form the embryo proper. Differentiation of TE is regulated by the transcription factor Caudal-related homeobox 2 (Cdx2), but the mechanisms which act upstream of Cdx2 expression remain unknown. Here we show that the TEA domain family transcription factor, Tead4, is required for TE development.

View Article and Find Full Text PDF

We have examined the effects of signaling molecules and Notch signaling on the mechanisms regulating neurogenin (ngn)-2 expression. This ngn-2 is a transcription factor that is essential for the specification of early differentiating sensory neurons in the dorsal root ganglia. In the presence of bone morphogenetic protein (BMP), anti-ngn-2-positive cells appeared in mouse trunk neural crest cell cultures, and they expressed Brn3, indicating that ngn-2-expressing cells are sensory neurons.

View Article and Find Full Text PDF

The renal organs of 32 species of cephalopods (renal appendage of all cephalopods, and renal and pancreatic appendages in decapods) were examined for parasite fauna and for histological comparison. Two phylogenetically distant organisms, dicyemid mesozoans and chromidinid ciliates, were found in 20 cephalopod species. Most benthic cephalopods (octopus and cuttlefish) were infected with dicyemids.

View Article and Find Full Text PDF

The significance of the envelope glycoprotein in the transmission of pig endogenous retrovirus (PERV) to human cells was investigated. Pig endothelial cells (PEC) were transduced with the LacZ gene by a pseudotype infection and then infected with PERV subtype B. Culture supernatants of the infected PEC previously incubated with several types of drugs were inoculated into HEK293 cells.

View Article and Find Full Text PDF

We have examined the roles of signaling molecules in the mechanisms underlying the induction of neurogenin (ngn)-1 expression. ngn-1 is a basic helix-loop-helix (bHLH) transcription factor, which is essential for the specification of trigeminal sensory neurons. Semiquantitative reverse transcriptase-polymerase chain reaction using cranial explants in organ cultures showed that sonic hedgehog (Shh) promotes ngn-1 expression.

View Article and Find Full Text PDF