High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFA search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDFThis Letter presents results from a combination of searches for Higgs boson pair production using 126-140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.
View Article and Find Full Text PDFThis Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→ℓνℓ^{'}ℓ^{'}(ℓ,ℓ^{'}=e,μ) production. The dataset used corresponds to an integrated luminosity of 140 fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined.
View Article and Find Full Text PDFNihon Koshu Eisei Zasshi
January 2025
Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or Higgsino production decaying via standard model W, Z, or h bosons are combined to extend the mass reach to the produced supersymmetric particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% C.
View Article and Find Full Text PDFA combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: bb[over ¯]bb[over ¯], bb[over ¯]τ^{+}τ^{-}, and bb[over ¯]γγ. No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV.
View Article and Find Full Text PDFHiggsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is O(1 GeV). This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from 0.
View Article and Find Full Text PDFAngular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Pb+Pb and pp collisions at the LHC.
View Article and Find Full Text PDFThis Letter presents the first study of Higgs boson production in association with a vector boson (V=W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at sqrt[s]=13 TeV and corresponding to an integrated luminosity of 137 fb^{-1}. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into bb[over ¯].
View Article and Find Full Text PDFATLAS measured the centrality dependence of the dijet yield using 165 nb^{-1} of p+Pb data collected at sqrt[s_{NN}]=8.16 TeV in 2016. The event centrality, which reflects the p+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter.
View Article and Find Full Text PDFThe first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018.
View Article and Find Full Text PDFA measurement of the mass of the Higgs boson combining the H→ZZ^{*}→4ℓ and H→γγ decay channels is presented. The result is based on 140 fb^{-1} of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11±0.
View Article and Find Full Text PDFWe develop a transient photoinduced Kerr rotation spectroscopy technique using a heterodyne detection scheme to study spin dynamics of microscopic quantum states in solids, such as single quantum dots and spin helixes. The use of the heterodyne beat note signal generated by the interference of the frequency-shifted probe and reference pulses realizes the Kerr rotation measurements in combination with micro-spectroscopy, even when the probe pulse propagates collinearly with the strong pump pulse, which resonantly excites the probing state. In addition, the interference gives an optical amplification of the Kerr signal, which provides a clear observation of the photoinduced spin dynamics by the weak probe intensity.
View Article and Find Full Text PDFTailoring spectral properties of photon pairs is of great importance for optical quantum information and measurement applications. High-resolution spectral measurement is a key technique for engineering spectral properties of photons, making them ideal for various quantum applications. Here we demonstrate spectral measurements and optimization of frequency-entangled photon pairs produced via spontaneous parametric downconversion (SPDC), utilizing frequency-resolved sum-frequency generation (SFG), the reverse process of SPDC.
View Article and Find Full Text PDFEnhanced manipulation and analysis of bio-particles using light confined in nano-scale dielectric structures has proceeded apace in the last several years. Small mode volumes, along with the lack of a need for bulky optical elements give advantages in sensitivity and scalability relative to conventional optical manipulation. However, manipulation of lipid vesicles (liposomes) remains difficult, particularly in the sub-micron diameter regime.
View Article and Find Full Text PDFJ Vasc Surg Cases Innov Tech
December 2020
Open reconstruction of superior mesenteric artery aneurysms is very difficult, especially if the lesion is extensive. Aneurysmal lesions were found in a 74-year-old woman during a medical checkup. Computed tomography scan showed a 6.
View Article and Find Full Text PDFRecently, much research concerning the combination of nano-scale waveguides with nano-crystals and other nano-particles has been reported because of possible applications in the field of quantum information and communication. The most useful and convenient method to verify the nature of such systems is optical detection. However, due to the diffraction limit, optical identification of characteristics such as particle type, particle position, etc.
View Article and Find Full Text PDF