An evolutionarily conserved protein Tel2 regulates a variety of stress signals. In mammals, TEL2 associates with TTI1 and TTI2 to form the Triple T (TTT: TEL2-TTI1-TTI2) complex as well as with all the phosphatidylinositol 3-kinase-like kinases (PIKKs) and the R2TP (Ruvbl1-Ruvbl2-Tah1-Pih1 in budding yeast)/prefoldin-like complex that associates with HSP90. The phosphorylation of TEL2 by casein kinase 2 (CK2) enables direct binding of PIHD1 (mammalian Pih1) to TEL2 and is important for the stability and the functions of PIKKs.
View Article and Find Full Text PDFThe spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown.
View Article and Find Full Text PDFTransition from proliferation to quiescence brings about extensive changes in cellular behavior and structure. However, the genes that are crucial for establishing and/or maintaining quiescence are largely unknown. The fission yeast Schizosaccharomyces pombe is an excellent model in which to study this problem, because it becomes quiescent under nitrogen starvation.
View Article and Find Full Text PDFNutrients are essential for cell growth and division. Screening of Schizosaccharomyces pombe temperature-sensitive strains led to the isolation of a nutrient-insensitive mutant, tor2-287. This mutant produces a nitrogen starvation-induced arrest phenotype in rich media, fails to recover from the arrest, and is hypersensitive to rapamycin.
View Article and Find Full Text PDFBody cells in multicellular organisms are in the G0 state, in which cells are arrested and terminally differentiated. To understand how the G0 state is maintained, the genes that are specifically expressed or repressed in G0 must be identified, as they control G0. In the fission yeast Schizosaccharomyces pombe, haploid cells are completely arrested under nitrogen source starvation with high viability.
View Article and Find Full Text PDF