Publications by authors named "Mitsuhiro Yamaga"

We developed a novel quasielastic scattering spectroscopy system that uses a multiline frequency comblike resolution function to overcome the limit on the accessible timescale imposed by the inherent single-energy resolution of conventional spectroscopy systems. The new multiline system possesses multiple resolutions and can efficiently cover a wide time range, from 100 ps to 100 ns, where x-ray-based dynamic measurement techniques are being actively developed. It enables visualization of the relaxation shape and wave-number-dependent dynamic behavior using a two-dimensional detector, as demonstrated for the natural polymer polybutadine without deuteration.

View Article and Find Full Text PDF

X-ray free-electron laser (XFEL) pulses from SPring-8 Ångstrom Compact free-electron LAser (SACLA) with a temporal duration of <10 fs have provided a variety of benefits in scientific research. In a previous study, an arrival-timing monitor was developed to improve the temporal resolution in pump-probe experiments at beamline 3 by rearranging data in the order of the arrival-timing jitter between the XFEL and the synchronized optical laser pulses. This paper presents Timing Monitor Analyzer (TMA), a software package by which users can conveniently obtain arrival-timing data in the analysis environment at SACLA.

View Article and Find Full Text PDF
Article Synopsis
  • The text describes the soft X-ray free-electron laser (FEL) beamline of the SPring-8 Compact free-electron LAser (SACLA), detailing its design and performance.* -
  • A prototype machine, the SPring-8 Compact SASE Source test accelerator, was moved to the SACLA undulator hall to specifically support this soft X-ray beamline.* -
  • The system can generate both soft and hard X-ray FELs simultaneously, achieving a pulse energy of 110 µJ at a 12.4 nm wavelength with an electron beam energy of 780 MeV.*
View Article and Find Full Text PDF

A data acquisition system for X-ray free-electron laser experiments at SACLA has been developed. The system has been designed for reliable shot-to-shot data storage with a high data stream greater than 4 Gbps and massive data analysis. Configuration of the system and examples of prompt data analysis during experiments are presented.

View Article and Find Full Text PDF

Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio.

View Article and Find Full Text PDF

We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC).

View Article and Find Full Text PDF