Publications by authors named "Mitsuhiro Saito"

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for label-free chemical analysis. The emergence of nonmetallic materials as SERS substrates, offering chemical signal enhancements, presents an exciting direction for achieving reproducible and biocompatible SERS, a challenge with traditional metallic substrates. Despite the potential, the realm of nonmetallic SERS substrates, particularly nanoparticles, remains largely untapped.

View Article and Find Full Text PDF

Chirality-controlled synthesis of carbon nanotubes (CNTs) is one of the ultimate goals in the field of nanotube synthesis. At present, direct synthesis achieving a purity of over 90%, which can be called single-chirality synthesis, has been achieved for only two types of chiralities: (14,4) and (12,6) CNTs. Here, we realized an ultrahigh-purity (∼95.

View Article and Find Full Text PDF

Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce) associated with oxygen vacancies on CeO(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability.

View Article and Find Full Text PDF

Surfactant plays a remarkable role in determining the growth process (facet exposition) of colloidal nanocrystals (NCs) and the formation of self-assembled NC superstructures, the underlying mechanism of which, however, still requires elucidation. In this work, the mechanism of surfactant-mediated morphology evolution and self-assembly of CeO2 nanocrystals is elucidated by exploring the effect that surfactant modification has on the shape, size, exposed facets, and arrangement of the CeO2 NCs. It is directly proved that surfactant molecules determine the morphologies of the CeO2 NCs by preferentially bonding onto Ce-terminated {100} facets, changing from large truncated octahedra (mostly {111} and {100} exposed), to cubes (mostly {100} exposed) and small cuboctahedra (mostly {100} and {111} exposed) by increasing the amount of surfactant.

View Article and Find Full Text PDF

Solids are generally classified into three categories based on their atomic arrangement: crystalline, quasicrystalline and amorphous. Here we report MgO and NdO ceramic phases with special atomic arrangements that should belong to a category of solids different from these three well known categories by combining state-of-the-art atomic-resolution scanning transmission electron microscopy and first-principles calculations. The reported solid structure exhibits a one-dimensional (1D) long-range order with a translational periodicity and is composed of structural units that individually have atomic arrangements similar to those observed in coincidence-site lattice configurations present at grain boundaries.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes how the distribution of cerium valence states affects oxygen vacancies (V) in ultrafine cerium oxide (CeO) nanocubes (NCs) using advanced electron microscopy techniques.
  • It reveals that smaller CeO NCs (5.4 nm) have Ce cations distributed throughout, unlike larger NCs, where Ce is mainly on the surface.
  • The research explains that as the NCs decrease in size, it leads to lattice expansion, which lowers the energy required for oxygen vacancy formation, enhancing our understanding of cerium's behavior in these tiny structures.
View Article and Find Full Text PDF

Organic surfactant controls the synthesis of nanocrystals (NCs) with uniform size and morphology by attaching on the surface of NCs and further facilitates their assembly into ordered superstructure, which produces versatile functional nanomaterials for practical applications. It is essential to directly resolve the surfactant molecules on the surface of NCs to improve the understanding of surface chemistry of NCs. However, the imaging resolution and contrast are insufficient for a single molecule of organic surfactant on NCs.

View Article and Find Full Text PDF

Polycrystalline metal oxides find diverse applications in areas such as nanoelectronics, photovoltaics and catalysis. Although grain boundary defects are ubiquitous their structure and electronic properties are very poorly understood since it is extremely challenging to probe the structure of buried interfaces directly. In this paper we combine novel plan-view high-resolution transmission electron microscopy and first principles calculations to provide atomic level understanding of the structure and properties of grain boundaries in the barrier layer of a magnetic tunnel junction.

View Article and Find Full Text PDF

A collaborative work between mathematics and atom-resolved scanning transmission electron microscopy (STEM) has been conducted. The grain boundary in a bicrystal of a simple rock-salt oxide can show a complicated arrangement of structural units, which can be well predicted by an algorithm utilizing the Farey sequence. The estimated arrangements had a nice agreement with those observed by STEM in atomic-scale up to several tens of nanometers.

View Article and Find Full Text PDF

Magnetic tunnel junctions (MTJs) constitute a promising building block for future nonvolatile memories and logic circuits. Despite their pivotal role, spatially resolving and chemically identifying each individual stacking layer remains challenging due to spatially localized features that complicate characterizations limiting understanding of the physics of MTJs. Here, we combine advanced electron microscopy, spectroscopy, and first-principles calculations to obtain a direct structural and chemical imaging of the atomically confined layers in a CoFeB-MgO MTJ, and clarify atom diffusion and interface structures in the MTJ following annealing.

View Article and Find Full Text PDF

The electronic structures and macroscopic functionalities of two-dimensional (2D) materials are often controlled according to their size, atomic structures, and associated defects. This controllability is particularly important in ultrathin 2D nanosheets of transition-metal oxides because these materials exhibit extraordinary multifunctionalities that cannot be realized in their bulk constituents. To expand the variety of materials with exotic properties that can be used in 2D transition-metal-oxide nanosheets, it is essential to investigate fabrication processes for 2D materials.

View Article and Find Full Text PDF

Grain boundary (GB) phase transformations often occur in polycrystalline materials while exposed to external stimuli and are universally implicated in substantially affecting their properties, yet atomic-scale knowledge on the transformation process is far from developed. In particular, whether GBs loaded with defects due to treatments can still be conventionally considered as disordered areas with kinetically trapped structure or turn ordered is debated. Here we combine advanced electron microscopy, spectroscopy and first-principles calculations to probe individual TiO2 GB subject to different atmosphere, and to demonstrate that stimulated structural defects can self-assemble at GB, forming an ordered structure, which results in GB nonstoichiometry and structural transformations at the atomic scale.

View Article and Find Full Text PDF

Heterojunctions offer a tremendous opportunity for fundamental as well as applied research, ranging from the unique electronic phases in between oxides to the contact issues in semiconductor devices. Despite their pivotal roles, determining individual building atom of matter in heterojunctions is still challenging, especially for those between highly dissimilar structures, in which breaking of symmetry, chemistry, and bonds may give rise to complex reconstruction and intermixing at the junction. Here, we combine electron microscopy, spectroscopy, and first-principles calculations to determine individual reconstructed atomic columns and their charge states in a complex, multicomponent heterojunction between the delafossite CuScO2 and spinel MgAl2O4.

View Article and Find Full Text PDF

Steps and their associated adatoms extensively exist and play prominent roles in affecting surface properties of materials. Such impacts should be especially pronounced in two-dimensional, atomically-thin membranes like graphene. However, how single adatom behaves at monatomic steps of few-layer graphene is still illusive.

View Article and Find Full Text PDF

Dislocation defects together with their associated strain fields and segregated impurities are of considerable significance in many areas of materials science. However, their atomic-scale structures have remained extremely challenging to resolve, limiting our understanding of these ubiquitous defects. Here, by developing a complex modelling approach in combination with bicrystal experiments and systematic atomic-resolution imaging, we are now able to pinpoint individual dislocation cores at the atomic scale, leading to the discovery that even simple magnesium oxide can exhibit polymorphism of core structures for a given dislocation species.

View Article and Find Full Text PDF

Atomic-resolution imaging of beam-sensitive biominerals is extremely challenging, owing to their fairly complex structures and the damage caused by electron irradiation. Herein, we overcome these difficulties by performing aberration-corrected electron microscopy with low-dose imaging techniques, and report the successful direct atomic-resolution imaging of every individual atomic column in the complex fluorapatite structure of shark tooth enameloid, which can be of paramount importance for teeth in general. We demonstrate that every individual atomic column in shark tooth enameloid can be spatially resolved, and has a complex fluorapatite structure.

View Article and Find Full Text PDF

Defects play significant roles in properties of graphene and related device performances. Most studies of defects in graphene focus on their influences on electronic or luminescent optical properties, while controlling infrared optoelectronic performance of graphene by defect engineering remains a challenge. In the meantime, pristine graphene has very low infrared photoresponses of ~0.

View Article and Find Full Text PDF

Oxide heterointerfaces often trigger unusual electronic properties that are absent in respective bulks. Here, direct evidence is offered for spontaneously assembled local structural distortions in a single-phase bulk, which confine electrons to within an atomic layer with notable orbital reconstruction and coupling, close the forbidden band, induce a ferromagnetic ordering, and give rise to a strongly anisotropic, spin-polarized quasi-one-dimensional electron gas.

View Article and Find Full Text PDF

The ability to resolve spatially and identify chemically atoms in defects would greatly advance our understanding of the correlation between structure and property in materials. This is particularly important in polycrystalline materials, in which the grain boundaries have profound implications for the properties and applications of the final material. However, such atomic resolution is still extremely difficult to achieve, partly because grain boundaries are effective sinks for atomic defects and impurities, which may drive structural transformation of grain boundaries and consequently modify material properties.

View Article and Find Full Text PDF

Coaxing correlated materials to the proximity of the insulator-metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La(0.

View Article and Find Full Text PDF

Local structure, chemistry, and bonding at interfaces often radically affect the properties of materials. A combination of scanning transmission electron microscopy and density functional theory calculations reveals an atomic layer of carbon at a SiC/Ti3 SiC2 interface in Ohmic contact to p-type SiC, which results in stronger adhesion, a lowered Schottky barrier, and enhanced transport. This is a key factor to understanding the origin of the Ohmic nature.

View Article and Find Full Text PDF

We report the microstructure and gas-sensing properties of a nonequilibrium TiO(2)-SnO(2) solid solution prepared by the sol-gel method. In particular, we focus on the effect of Cd doping on the sensing behavior of the TiO(2)-SnO(2) sensor. Of all volatile organic compound gases examined, the sensor with Cd doping exhibits exclusive selectivity as well as high sensitivity to formaldehyde, a main harmful indoor gas.

View Article and Find Full Text PDF

We demonstrate local crystal structure analysis based on annular dark-field (ADF) imaging in scanning transmission electron microscopy (STEM). Using a stabilized STEM instrument and customized software, we first realize high accuracy of elemental discrimination and atom-position determination with a 10-pm-order accuracy, which can reveal major cation displacements associated with a variety of material properties, e.g.

View Article and Find Full Text PDF

Microstructure characterization has become indispensable to the study of complex materials, such as strongly correlated oxides, and can obtain useful information about the origin of their physical properties. Although atomically resolved measurements have long been possible, an important goal in microstructure characterization is to achieve element-selective imaging at atomic resolution. A combination of scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) is a promising technique for atomic-column analysis.

View Article and Find Full Text PDF

Atomic-resolution high-voltage transmission electron microscopy was applied to the atomic structure analysis of a well-defined Pd/ZnO polar interface, which was produced by internal oxidation. Viewing the ZnO along <1120> axis, each atomic column consists of either oxygen or zinc, so that an individual column was directly identified from the image contrast of the picture taken at the Scherzer defocus condition. The terminating chemical element at the Pd/ZnO interface, which is parallel to [111]Pd and to [0001]ZnO, was shown to be zinc but not oxygen on both sides of the precipitate.

View Article and Find Full Text PDF