The anterior (DA) and posterior parts of the deltoid (DP) show alternating contraction during shoulder flexion and extension movements. It is expected that an inhibitory spinal reflex between the DA and DP exists. In this study, spinal reflexes between the DA and DP were examined in healthy human subjects using post-stimulus time histogram (PSTH) and electromyogram averaging (EMG-A).
View Article and Find Full Text PDFIntroduction: Neuromuscular electrical stimulation (NMES) induces neural plasticity of the central nervous system (CNS) and improves motor function in patients with CNS lesions. However, the extended stimulus duration of NMES reduces its clinical applicability. Transcutaneous spinal direct current stimulation (tsDCS), which increases afferent input, may enhance the effects and reduce the stimulus duration of NMES.
View Article and Find Full Text PDFWrist position is known to affect the grip strength. We focused on the spinal reflex arc, which would support the movement, and investigated the effects of low-threshold afferents from the extensor carpi radialis (ECR) on the excitability of the flexor digitorum superficialis (FDS) motoneurons using the post-stimulus time-histogram (PSTH) and electromyogram-averaging (EMG-A) methods. Electrical conditioning stimulation of an intensity below the motor threshold was applied to the radial nerve branch innervating the ECR.
View Article and Find Full Text PDFEffects of low-threshold afferents from the anterior (DA), middle (DM) and posterior parts of the deltoid (DP) on the excitability of biceps brachii (BB) motoneurons in humans were studied. We evaluated the effects on individual motor units and motoneuron pool using a post-stimulus time-histogram (PSTH) and an electromyogram-averaging (EMG-A) methods, respectively, in 11 healthy human subjects. Electrical conditioning stimulation was delivered to the axillary nerve branch innervating DA (DA nerve), DM (DM nerve) and DP (DP nerve) with the intensity below the motor threshold.
View Article and Find Full Text PDFBackground: Simultaneously modulating individual neural oscillation and cortical excitability may be important for enhancing communication between the primary motor cortex and spinal motor neurons, which plays a key role in motor control. However, it is unknown whether individualized beta-band oscillatory transcranial direct current stimulation (otDCS) enhances corticospinal oscillation and excitability.
Objective: This study investigated the effects of individualized beta-band otDCS on corticomuscular coherence (CMC) and corticospinal excitability in healthy individuals.
Background: Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (β-NMES) based on corticomuscular coherence (CMC) and investigated the effects of β-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers.
View Article and Find Full Text PDFAfter vibration, Hoffmann reflex (H reflex) amplitude is depressed; however, the mechanisms underlying these phenomena remain unknown. This study investigated the influence of frequency and duration of vibration on the H reflex amplitude, heteronymous facilitation of the tendon jerk (T wave) mediated by group Ia afferents, and cervicomedullary motor evoked potential (CMEP) amplitude in 18 healthy human subjects. The H reflex of the flexor carpi radialis (FCR) was induced by median nerve stimulation at the elbow, and the conditioning FCR stimulation enhanced the T wave of the biceps brachii (BB).
View Article and Find Full Text PDFRepetitive peripheral magnetic stimulation (rPMS) may improve motor function following central nervous system lesions, but the optimal parameters of rPMS to induce neural plasticity and mechanisms underlying its action remain unclear. We examined the effects of rPMS over wrist extensor muscles on neural plasticity and motor performance in 26 healthy volunteers. In separate experiments, the effects of rPMS on motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), direct motor response (M-wave), Hoffmann-reflex, and ballistic wrist extension movements were assessed before and after rPMS.
View Article and Find Full Text PDFEffects of low-threshold afferents from the flexor digitorum superficialis (FDS) to the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU) and extensor carpi ulnaris (ECU) motoneurons were examined using a post-stimulus time-histogram (PSTH) and electromyogram-averaging (EMG-A) methods in seven healthy human subjects. Electrical conditioning stimulation to the median nerve branch innervating FDS with the intensity immediately below the motor threshold was delivered. In the PSTH study, the stimulation produced a trough (inhibition) in 19/44 (43%) of FCR and 17/41 (41%) of FCU motor units.
View Article and Find Full Text PDFPurpose: Our previous studies using a poststimulus time histogram method demonstrated inhibitory spinal reflex arcs (inhibition) between the brachioradialis (BR) and flexor carpi radialis (FCR) in humans. Group I afferents mediated the inhibition through an oligosynaptic path. In this study, effects of the inhibition on excitability of the motoneuron pools were examined, and we tried to clarify which afferents of group Ia or Ib are responsible for the inhibition.
View Article and Find Full Text PDFIntroduction: This study examines effects of low-threshold afferents from the brachioradialis (BR) on excitability of triceps brachii (TB) motor neurons in humans.
Methods: We evaluated the effects using a post stimulus time histogram (PSTH) and electromyogram averaging (EMG-A) methods in 13 healthy human participants. Electrical conditioning stimulation to the radial nerve branch innervating BR with the intensity below the motor threshold was delivered.
Spinal reflex arcs mediated by low-threshold (group I) afferents from muscle spindles and Golgi tendon organs modulate motoneuron excitabilities to coordinate smooth movements. In this study, the reflex arcs between the brachioradialis (BR) and extensor carpi radialis muscles (ECR) were examined in nine healthy human subjects using a post-stimulus time-histogram method. Electrical conditioning stimuli (ES) to the radial nerve branches innervating BR (BR nerve) and ECR (ECR nerve) with the intensity just below the motor threshold were delivered and firings of the ECR and BR motor units were recorded in 6 and 7 of the nine subjects, respectively.
View Article and Find Full Text PDFEffects of low-threshold afferents from the flexor digitorum superficialis (FDS) to the extensor carpi radialis (ECR) motoneurons were examined using a post-stimulus time-histogram (PSTH) and electromyogram-averaging (EMG-A) methods in eight healthy human subjects. In the PSTH study in five of the eight subjects, electrical conditioning stimuli (ES) to the median nerve branch innervating FDS with the intensity below the motor threshold induced excitatory effects (facilitation) in 39 out of 92 ECR motor units. In 11 ECR motor units, the central synaptic delay of the facilitation was -0.
View Article and Find Full Text PDFSpinal reflex arcs mediated by low threshold afferents between the brachioradialis (BR) and flexor carpi radialis (FCR) were studied in eleven healthy human subjects using a post-stimulus time-histogram method. Electrical conditioning stimuli (ES) to the radial nerve branch innervating BR with the intensity below the motor threshold (MT) induced an early and significant trough (inhibition) in 32/85 FCR motor units (MUs) in 9/9 subjects. Such inhibition was never provoked by cutaneous stimulation.
View Article and Find Full Text PDFIn order to elucidate strict actions of the human wrist flexors, motion and force produced by electrical neuromuscular stimulation (ENS) to each of musculus (m.) flexsor carpi radialis (FCR) and m. flexsor carpi ulnaris (FCU) with the prone, semiprone, and supine forearm were studied in ten healthy human subjects.
View Article and Find Full Text PDF