Investigations of protein folding have largely involved the use of disulfide-containing proteins, since the disulfide-coupled folding of proteins allows folding intermediates to be trapped and their conformations determined. However, studies of the folding mechanisms of mid-size proteins face several problems, one of which is that detecting folding intermediates is difficult. Therefore, to solve this issue, a novel peptide reagent, maleimidohexanoyl-Arg-Tyr-NH, was designed and applied to the detection of folding intermediates of model proteins.
View Article and Find Full Text PDFCocoonase is folded in the form of a zymogen precursor protein (prococoonase) with the assistance of the propeptide region. To investigate the role of the propeptide sequence on the disulfide-coupled folding of cocoonase and prococoonase, the amino acid residues at the degradation sites during the refolding and auto-processing reactions were determined by mass spectrometric analyses and were mutated to suppress the numerous degradation reactions that occur during the reactions. In addition, the Lys residue at the propeptide region was also mutated to estimate whether the entire sequence is absolutely required for the activation of cocoonase.
View Article and Find Full Text PDFThe silkworm, Bombyx mori, is an attractive host for recombinant protein production due to its high expression efficiency, quality, and quantity. Two expression systems have been widely used for recombinant protein production in B. mori: baculovirus/silkworm expression system and transgenic silkworm expression system.
View Article and Find Full Text PDFCocoonase, a protein that is produced by the silkworm (Bombyx mori), is thought to specifically digest the sericin protein of the cocoon and has a high homology with trypsin. Similar to trypsin, cocoonase is folded as an inactive precursor protein which is activated by releasing the propeptide moiety. However, the mechanism responsible for the activation of its catalytic structure has not yet been determined in detail.
View Article and Find Full Text PDFThe molecular structural analysis of capture thread, including its viscid droplets of oriental golden orb-web spider Nephila clavata, has been performed by microscopic FT-IR spectroscopy. The obtained spectra of capture threads with and without viscid droplets indicate that the features in the region of 1400 - 1000 cm will be useful as marker bands for the degree of the dissolving of viscid droplet; further, the bands at 1395 and 1335 cm are attributable to the components of anchoring granules located at the inner side of viscid droplets. By recrystallization and its infrared measurements, the main chemical component of viscid droplets is assignable to glycosylated proline.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
Ants are eusocial insects that are found in most regions of the world. Within its caste, worker ants are responsible for various tasks that are required for colony maintenance. In their chemical communication, α-helical carrier proteins, odorant-binding proteins, and chemosensory proteins, which accumulate in the sensillum lymph in the antennae, play essential roles in transferring hydrophobic semiochemicals to chemosensory receptors.
View Article and Find Full Text PDFAntibacterial factor 2 (ABF-2) is a 67-residue antimicrobial peptide derived from the nematode Caenorhabditis elegans. Although it has been reported that ABF-2 exerts in vitro microbicidal activity against a range of bacteria and fungi, the structure of ABF-2 has not yet been solved. To enable structural studies of ABF-2 by NMR spectroscopy, a large amount of isotopically labeled ABF-2 is essential.
View Article and Find Full Text PDFJuvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP.
View Article and Find Full Text PDFDragline silk is a high-performance biopolymer with exceptional mechanical properties. Artificial spider dragline silk is currently prepared by a recombinant technique or chemical synthesis. However, the recombinant process is costly and large-sized synthetic peptides are needed for fiber formation.
View Article and Find Full Text PDFWe examined the use of near infrared (NIR) spectroscopy as a rapid technique for the evaluation of sewage quality. Influent water samples, primary sedimentation tank water samples, and final effluent water samples were collected from sewage treatment facilities in Nagoya, Japan and their NIR spectra obtained. Partial least squares (PLS) models for total phosphate (TP), total nitrogen (TN), biochemical oxygen demand (BOD), total organic carbon (TOC), and turbidity of sewage water were constructed from the NIR data.
View Article and Find Full Text PDFThere have been two major problems preventing applications of termite cellulases; one was difficulty for their hetelologous overexpression, and another is their low thermostability. We previously achieved adaptation of termite cellulase genes to an overexpression system of Escherichia coli by family shuffling of four orthologous cDNAs (Biosci. Biotechnol.
View Article and Find Full Text PDFWe extracted silk produced by the larva of the hornet Vespa simillima xanthoptera Cameron from its nest. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the extracted hornet silk showed four major components with molecular weights between 35 and 60 kDa. The main amino acid components of the hornet silk protein were Ala (33.
View Article and Find Full Text PDFBiomacromolecules
November 2005
This paper reports the structure-dependent molecular orientation behavior of sericin, an adhesive silk protein secreted by silkworm, Bombyx mori. Although application of sericin as a biomaterial is anticipated because of its unique characteristics, sericin's physicochemical properties remain unclear, mainly because of its vulnerability to heat or alkaline treatment during separation from fibroin threads. This study employed intact sericin obtained from fibroin-deficient mutant silkworm to investigate the relationship between molecular orientation and the secondary structure of sericin.
View Article and Find Full Text PDFThe structure and stability of hydrogen bonds in alpha-chitin were investigated by (13)C solid-state NMR measurements at different temperatures. Splitting of the carbonyl carbon signal for alpha-chitin was interpreted as two types of hydrogen bonding; the peaks at 173.5 and 175.
View Article and Find Full Text PDFThe change in the conformation of the flexible O-CH2-CH2-CH2-O segment of poly(trimethylene terephthalate) (PTT) monofilament caused by drawing was investigated by means of the gamma-gauche effect on the 13C solid-state NMR chemical shift of the internal methylene carbon, combined with the NMR relaxations. The conformation around the O-CH2 and CH2-O bonds for as-spun fiber was trans/trans. On drawing, followed by heat treatment, the conformation changed to gauche/gauche.
View Article and Find Full Text PDFBombyx mori lysozyme (BmLZ), from the silkworm, is an insect lysozyme. BmLZ has considerable activity at low temperatures and low activation energies compared with those of hen egg white lysozyme (HEWLZ), according to measurements of the temperature dependencies of relative activity (lytic and glycol chitin) and the estimation of activation energies using the Arrhenius equation. Being so active at low temperatures and low activation energies is characteristic of psychrophilic (cold-adapted) enzymes.
View Article and Find Full Text PDFA novel method was developed to infect perorally the silkworm Bombyx mori L. with budded particles of nucleopolyhedrovirus (BmNPV) using flufenoxuron, an insect growth regulator. NPV vectors are used to obtain proteins that occur naturally in minute amounts.
View Article and Find Full Text PDF