Background: E2027 is a novel, highly selective and potent inhibitor of phosphodiesterase9 (PDE9) being evaluated as a treatment for dementia with Lewy bodies.
Methods: Phase 1, randomized, double-blind, single ascending dose (SAD, n=96) and multiple ascending dose (MAD, n=68) studies evaluated E2027 doses (5 to 1200 mg) in healthy subjects. The impact of age, race (Japanese/non-Japanese), and food on pharmacokinetics (PK)/pharmacodynamics were evaluated.
N-Cyclopropylmethyl-7-(2,6-dimethoxy-4-methoxymethylphenyl)-2-ethyl-N-(tetrahydro-2H-pyran-4-ylmethyl)pyrazolo[1,5-a]pyridin-3-amine tosylate (E2508) is a newly discovered selective corticotropin-releasing factor 1 receptor antagonist. Here, we investigated the effects of E2508 on wrap restraint stress-induced defecation and visceral pain in rats. Oral pretreatment with E2508 dose-dependently decreased stool weights after 20min wrap restraint stress and significant effects were observed at doses of 30 and 100mg/kg.
View Article and Find Full Text PDFCorticotropin-releasing factor (CRF) is a hormone secreted by the hypothalamus in response to stress, and CRF antagonists may be effective for the treatment of stress-related disorders including major depressive and anxiety disorders. Here, we investigated the in vivo pharmacological profile of N-cyclopropylmethyl-7-(2,6-dimethoxy-4-methoxymethylphenyl)-2-ethyl-N-(tetrahydro-2H-pyran-4-ylmethyl)pyrazolo[1,5-a]pyridin-3-amine tosylate (E2508), a recently synthesized, orally active CRF1 receptor antagonist. Oral administration of a single dose of E2508 (3 or 10mg/kg), but not fluoxetine (30mg/kg), a selective serotonin reuptake inhibitor (SSRI), significantly shortened immobility time in rats in the forced swim test.
View Article and Find Full Text PDFBioorg Med Chem
November 2012
We previously reported a series of 8-methyl-2-aryl-5-alkylaminoquinolines as a novel class of corticotropin-releasing factor-1 (CRF(1)) receptor antagonists. A critical issue encountered for this series of compounds was low aqueous solubility at physiological pH (pH 7.4).
View Article and Find Full Text PDFThis paper describes the design, synthesis, and structure-activity relationships of a novel series of 7-dialkylamino-3-phenyl-6-methoxy pyrazolo[5,1-b]thiazole derivatives for use as selective antagonists of the corticotropin-releasing factor 1 (CRF(1)) receptor. The most promising compound, N-butyl-3-[4-(ethoxymethyl)-2,6-dimethoxyphenyl]-6-methoxy-N-(tetrahydro-2H-pyran-4-yl)pyrazolo[5,1-b][1,3]thiazole-7-amine (6t), showed high affinity (IC(50) = 70 nM) and functional antagonism (IC(50) = 7.1 nM) for the human CRF(1) receptor as well as dose-dependent inhibition of the CRF-induced increase in the plasma adrenocorticotropic hormone (ACTH) concentration at a dose of 30 mg/kg (po).
View Article and Find Full Text PDFWe designed and synthesized a series of 2-Ar-8-methyl-5-alkylaminolquinolines as potent corticotropin-releasing factor 1 (CRF(1)) receptor antagonists. The structure-activity relationships of substituents at each position (R(3), R(5), R(5'), and R(8)) was investigated. By derivatization, three compounds (6, 14b, and 14c) were identified as orally active CRF(1) receptor antagonists.
View Article and Find Full Text PDFA series of 5-alkylaminolquinolines was designed and synthesized as potential novel CRF(1) receptor antagonists. The structure-activity relationships (SARs) of the substituents on each position (R(2), R(3), R(5) and R(5')) were investigated.
View Article and Find Full Text PDFDesign, synthesis, and structure-activity relationships of a series of 3-dialkylamino-7-phenyl pyrazolo[1,5-a]pyridines (I) as selective antagonists of the corticotropin-releasing factor 1 (CRF(1)) receptor are described. The most prominent compound to emerge from this work, 46 (E2508), exhibits potent in vitro activity, excellent drug-like properties, and robust oral efficacy in animal models of stress-related disorders. It has advanced into clinical trials.
View Article and Find Full Text PDFBackground: ADAM22 is a member of the ADAM gene family, but the fact that it is expressed only in the nervous systems makes it unique. ADAM22's sequence similarity to other ADAMs suggests it to be an integrin binder and thus to have a role in cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM22, we employed gene targeting to generate ADAM22 knockout mice.
View Article and Find Full Text PDFThe voltage-dependent N-type Ca2+ channel is localized in the plasma membrane of insulin-releasing beta-cells and glucagon-releasing alpha-cells in the islets of Langerhans in the pancreas. To examine the contribution of N-type Ca2+ channel to glucose homeostasis, we performed glucose tolerance and insulin tolerance tests with N-type Ca2+ channel alpha(1B)-subunit-deficient mice on a normal or high-fat diet. The fasting glucose level in homozygous mice on the normal diet was significantly lower than those in wild and heterozygous mice.
View Article and Find Full Text PDFAlthough the N-type Ca2+ channel plays a role in a variety of neuronal functions, N-type Ca2+ channel alpha1B-deficient mice exhibit normal life span without apparent behavioral or histologic abnormalities. To examine whether the reason for their normal behavior is compensation by other Cav2 channel alpha1 or beta subunit genes and to analyze whether genetic background influences the subunit expression pattern, we studied the alpha1A, alpha1E, beta1b, beta2, beta3 and beta4 subunit mRNA levels in cerebellum of alpha1B-deficient mice with CBA x C57BL/6 or CBA/JN background. In cerebellum of the mice with a CBA x C57BL/6 background, alpha1A mRNA was expressed at a higher level than that in wild-type or heterozygous mice, but difference in the expression levels of alpha1E, beta1b, beta2, beta3 and beta4 subunits was not found among wild-type, heterozygous, and homozygous mice.
View Article and Find Full Text PDFThe Ca(2+) channel alpha(1B) subunit is a pore-forming component capable of generating N-type Ca(2+) channel activity. Although the N-type Ca(2+) channel plays a role in a variety of neuronal functions, alpha(1B)-deficient mice show normal behavior, presumably owing to compensation by the other Ca(2+) channels. In this study, we examined the mRNA expression of the P/Q-type Ca(2+) channel alpha(1A) subunit in cerebellum of alpha(1B)-deficient mice.
View Article and Find Full Text PDFN-type and P/Q-type Ca2+ channels play an important role in the processing of olfactory information. However, N-type Ca2+ channel alpha1B-deficient mice show normal behavior, presumably owing to compensation by other Ca2+ channels. P/Q-type Ca2+ channel alpha1A mRNA was expressed at a higher level in olfactory bulb of homozygous alpha1B-deficient mice than wild-type or heterozygous mice.
View Article and Find Full Text PDFDifferential properties of voltage-dependent Ca2+ channels have been primarily ascribed to the alpha1 subunit, of which 10 different subtypes are currently known. For example, channels that conduct the N-type Ca2+ current possess the alpha1B subunit (Cav2.2), which has been localized, inter alia, to the piriform cortex, hippocampus, hypothalamus, locus coeruleus, dorsal raphe, thalamic nuclei, and granular layer of the cortex.
View Article and Find Full Text PDFN-type voltage-dependent Ca(2+) channels (VDCCs), predominantly localized in the nervous system, have been proposed to play vital roles in a variety of neuronal functions such as neurotransmitter release at sympathetic nerve terminals. To directly approach the elucidation of the physiological significance of N-type VDCCs in the autonomic nervous system, alpha(1B) subunit (Ca(V) 2.2)-deficient mice were generated, in which peripheral neurons showed a complete and selective elimination of N-type channel currents sensitive to omega-conotoxin GVIA (the peptide toxin from the fish-hunting cone snail Conus geographus), without a significant effect on the activity of other VDCC types.
View Article and Find Full Text PDF