It has been well established that a starvation-induced decrease in insulin/IGF-I and serum amino acids effectively suppresses the mammalian target of rapamycin (mTor) signaling to induce autophagy, which is a major degradative cellular pathway in skeletal muscles. In this study, we investigated the systematic effects of exercise on the mTor signaling of skeletal muscles. Wild type C57BL/6J mice were starved for 24h under synchronous autophagy induction conditions.
View Article and Find Full Text PDFSkeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin-proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria.
View Article and Find Full Text PDFBoth anabolism and catabolism of the amino acids released by starvation-induced autophagy are essential for cell survival, but their actual metabolic contributions in adult animals are poorly understood. Herein, we report that, in mice, liver autophagy makes a significant contribution to the maintenance of blood glucose by converting amino acids to glucose via gluconeogenesis. Under a synchronous fasting-initiation regimen, autophagy was induced concomitantly with a fall in plasma insulin in the presence of stable glucagon levels, resulting in a robust amino acid release.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2008
Autophagy is a bulk protein degradation system for the entire organelles and cytoplasmic proteins. Previously, we have shown the liver dysfunction by autophagy deficiency. To examine the pathological effect of autophagy deficiency, we examined protein composition and their levels in autophagy-deficient liver by the proteomic analysis.
View Article and Find Full Text PDFJuvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessively inherited lysosomal storage disease involving a mutation in the CLN3 gene. The sequence of CLN3 was determined in 1995; however, the localization of the CLN3 gene product (Cln3p) was not confirmed. In this study, we investigated endogenous Cln3p using two peptide antibodies raised against two distinct epitopes of murine Cln3p.
View Article and Find Full Text PDF