Publications by authors named "Mitra Safavi-Naeini"

Purpose: To evaluate the impact of a range of shielding strategies on the rate of false positive detections by a simulated detector for application in Neutron Capture Enhanced Particle Therapy (NCEPT).

Methods: In this work, we extend a previously published method for neutron capture detection and discrimination. A Geant4 Monte Carlo model was designed, with the simulated irradiation of a poly(methyl methacrylate) phantom and cubic B insert with carbon and helium ion beams and various shielding configurations.

View Article and Find Full Text PDF

Purpose: This study aims to validate the Light-Ion Quantum Molecular Dynamics (LIQMD) model, an advanced version of the QMD model for more accurate simulations in hadron therapy, incorporated into Geant4 (release 11.2).

Methods: Two sets of experiments are employed.

View Article and Find Full Text PDF
Article Synopsis
  • The study compares the accuracy of different hadronic inelastic physics models in predicting positron-emitting fragments during carbon and oxygen ion therapy using various Geant4 Monte Carlo simulation toolkit versions.
  • Three fragmentation models (BIC, QMD, INCL++) were tested across ten Geant4 versions with phantoms made of polyethylene, gelatin, or PMMA to evaluate positron annihilation and parent isotope production.
  • Results showed no single model/version consistently predicted all outcomes best; BIC in Geant4 10.2 was most accurate overall, while QMD excelled in estimating peak positron yield depth and the point where yield drops to 50%.
View Article and Find Full Text PDF

Purpose: Neutron capture enhanced particle therapy (NCEPT) is a proposed augmentation of charged particle therapy that exploits thermal neutrons generated internally, within the treatment volume via nuclear fragmentation, to deliver a biochemically targeted radiation dose to cancer cells. This work is the first experimental demonstration of NCEPT, performed using both carbon and helium ion beams with 2 different targeted neutron capture agents (NCAs).

Methods And Materials: Human glioblastoma cells (T98G) were irradiated by carbon and helium ion beams in the presence of NCAs [B]-BPA and [Gd]-DOTA-TPP.

View Article and Find Full Text PDF

This work provides the first experimental proof of an increased neutron capture photon signal following the introduction of boron to a PMMA phantom during helium and carbon ion therapies in Neutron Capture Enhanced Particle Therapy (NCEPT). NCEPT leverages [Formula: see text]B neutron capture, leading to the emission of detectable 478 keV photons. Experiments were performed at the Heavy Ion Medical Accelerator in Chiba, Japan, with two Poly(methyl methacrylate) (PMMA) targets, one bearing a boron insert.

View Article and Find Full Text PDF

In this study, we present a validated Geant4 Monte Carlo simulation model of the Dingo thermal neutron imaging beamline at the Australian Centre for Neutron Scattering. The model, constructed using CAD drawings of the entire beam transport path and shielding structures, is designed to precisely predict the in-beam neutron field at the position at the sample irradiation stage. The model's performance was assessed by comparing simulation results to various experimental measurements, including planar thermal neutron distribution obtained in-beam using gold foil activation and [Formula: see text]B[Formula: see text]C-coated microdosimeters and the out-of-beam neutron spectra measured with Bonner spheres.

View Article and Find Full Text PDF

. We aim to evaluate a method for estimating 1D physical dose deposition profiles in carbon ion therapy via analysis of dynamic PET images using a deep residual learning convolutional neural network (CNN). The method is validated using Monte Carlo simulations ofC ion spread-out Bragg peak (SOBP) profiles, and demonstrated with an experimental PET image.

View Article and Find Full Text PDF

Neutron Capture Enhanced Particle Therapy (NCEPT) boosts the effectiveness of particle therapy by capturing thermal neutrons produced by beam-target nuclear interactions in and around the treatment site, using tumour-specific [Formula: see text]B or [Formula: see text]Gd-based neutron capture agents. Neutron captures release high-LET secondary particles together with gamma photons with energies of 478 keV or one of several energies up to 7.94 MeV, for [Formula: see text]B and [Formula: see text]Gd, respectively.

View Article and Find Full Text PDF

The purpose of this work is to develop a validated Geant4 simulation model of a whole-body prototype PET scanner constructed from the four-layer depth-of-interaction detectors developed at the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan. The simulation model emulates the behaviour of the unique depth of interaction sensing capability of the scanner without needing to directly simulate optical photon transport in the scintillator and photodetector modules. The model was validated by evaluating and comparing performance metrics from the NEMA NU 2-2012 protocol on both the simulated and physical scanner, including spatial resolution, sensitivity, scatter fraction, noise equivalent count rates and image quality.

View Article and Find Full Text PDF

This work presents an iterative method for the estimation of the absolute dose distribution in patients undergoing carbon ion therapy, via analysis of the distribution of positron annihilations resulting from the decay of positron-emitting fragments created in the target volume. The proposed method relies on the decomposition of the total positron-annihilation distributions into profiles of the three principal positron-emitting fragment species - C, C and O. A library of basis functions is constructed by simulating a range of monoenergetic C ion irradiations of a homogeneous polymethyl methacrylate phantom and measuring the resulting one-dimensional positron-emitting fragment profiles and dose distributions.

View Article and Find Full Text PDF

Purpose: This work has two related objectives. The first is to estimate the relative biological effectiveness of two radioactive heavy ion beams based on experimental measurements, and compare these to the relative biological effectiveness of corresponding stable isotopes to determine whether they are therapeutically equivalent. The second aim is to quantitatively compare the quality of images acquired postirradiation using an in-beam whole-body positron emission tomography scanner for range verification quality assurance.

View Article and Find Full Text PDF
Article Synopsis
  • In heavy-ion therapy, it's crucial to accurately track where ion beams stop in tumors to ensure effective treatment and minimize damage to healthy tissue.
  • This study explored the use of positron emission tomography (PET) during treatment to verify the stopping positions of carbon (C) and oxygen (O) ion beams by analyzing shifts between the expected dose peak and the actual detected positions.
  • Experimental results showed that shifts were around 1.8 mm for O and 2.1 mm for C ion beams with a 5% momentum acceptance, indicating a need for careful monitoring when using broader acceptance levels to avoid overdosing normal tissues.
View Article and Find Full Text PDF

High-resolution arrays of discrete monocrystalline scintillators used for gamma photon coincidence detection in PET are costly and complex to fabricate, and exhibit intrinsically non-uniform sensitivity with respect to emission angle. Nanocomposites and transparent ceramics are two alternative classes of scintillator materials which can be formed into large monolithic structures, and which, when coupled to optical photodetector arrays, may offer a pathway to low cost, high-sensitivity, high-resolution PET. However, due to their high optical attenuation and scattering relative to monocrystalline scintillators, these materials exhibit an inherent trade-off between detection sensitivity and the number of scintillation photons which reach the optical photodetectors.

View Article and Find Full Text PDF

This work presents a technique for localising the endpoints of the lines of response in a PET scanner based on a continuous cylindrical shell scintillator. The technique is demonstrated by applying it to a simulation of a sensitivity-optimised continuous cylindrical shell PET system using two novel scintillator materials - a transparent ceramic garnet, GLuGAG:Ce, and a LuF:Ce-polystyrene nanocomposite. Error distributions for the endpoints of the lines of response in the axial, tangential and radial dimension as well as overall endpoint spatial error are calculated for three source positions; the resultant distribution of error in the placement of the lines of response is also estimated.

View Article and Find Full Text PDF

The distribution of fragmentation products predicted by Monte Carlo simulations of heavy ion therapy depend on the hadronic physics model chosen in the simulation. This work aims to evaluate three alternative hadronic inelastic fragmentation physics options available in the Geant4 Monte Carlo radiation physics simulation framework to determine which model most accurately predicts the production of positron-emitting fragmentation products observable using in-beam PET imaging. Fragment distributions obtained with the BIC, QMD, and INCL + + physics models in Geant4 version 10.

View Article and Find Full Text PDF

This work presents a simulation study evaluating relative biological effectiveness at 10% survival fraction (RBE10) of several different positron-emitting radionuclides in heavy ion treatment systems, and comparing these to the RBE10s of their non-radioactive counterparts. RBE10 is evaluated as a function of depth for three positron-emitting radioactive ion beams (C, C and O) and two stable ion beams (C and O) using the modified microdosimetric kinetic model (MKM) in a heterogeneous skull phantom subject to a rectangular 50 mm × 50 mm × 60 mm spread out Bragg peak. We demonstrate that the RBE10 of the positron-emitting radioactive beams is almost identical to the corresponding stable isotopes.

View Article and Find Full Text PDF

Parallax error caused by the detector crystal thickness degrades spatial resolution at the peripheral regions of the field-of-view (FOV) of a scanner. To resolve this issue, depth-of-interaction (DOI) measurement is a promising solution to improve the spatial resolution and its uniformity over the entire FOV. Even though DOI detectors have been used in dedicated systems with a small ring diameter such as for the human brain, breast and small animals, the use of DOI detectors for a large bore whole-body PET system has not been demonstrated yet.

View Article and Find Full Text PDF

This paper presents Neutron Capture Enhanced Particle Therapy (NCEPT), a method for enhancing the radiation dose delivered to a tumour relative to surrounding healthy tissues during proton and carbon ion therapy by capturing thermal neutrons produced inside the treatment volume during irradiation. NCEPT utilises extant and in-development boron-10 and gadolinium-157-based drugs from the related field of neutron capture therapy. Using Monte Carlo simulations, we demonstrate that a typical proton or carbon ion therapy treatment plan generates an approximately uniform thermal neutron field within the target volume, centred around the beam path.

View Article and Find Full Text PDF

This paper presents a simulation study of BrachyShade, a proposed internal source-tracking system for real time quality assurance in high dose rate prostate brachytherapy. BrachyShade consists of a set of spherical tungsten occluders located above a pixellated silicon photodetector. The source location is estimated by minimising the mean squared error between a parametric model of the shadow image and acquired images of the shadows projected on the detector plane.

View Article and Find Full Text PDF

This review discusses the use of stable (C, D) or radioactive isotopes (C, C, F, I, Cu, Ga) incorporated into the molecular structure of new drug entities for the purpose of pharmacokinetic or -dynamic studies. Metabolite in safety testing requires the administration of pharmacologically active doses. In such studies, radiotracers find application mainly in preclinical animal investigations, whereby LC-MS/MS is used to identify metabolite structure and drug-related effects.

View Article and Find Full Text PDF

With the increase in complexity of brachytherapy treatments, there has been a demand for the development of sophisticated devices for delivery verification. The Centre for Medical Radiation Physics (CMRP), University of Wollongong, has demonstrated the applicability of semiconductor devices to provide cost-effective real-time quality assurance for a wide range of brachytherapy treatment modalities. Semiconductor devices have shown great promise to the future of pretreatment and in vivo quality assurance in a wide range of brachytherapy treatments, from high-dose-rate (HDR) prostate procedures to eye plaque treatments.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl1tiqtu79mkfjonsl8bg6pd7dv74vdkg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once