Publications by authors named "Mitra Rebek"

IL-33 and its receptor ST2 play important roles in airway inflammation and contribute to asthma onset and exacerbation. The IL-33/ST2 signaling pathway recruits adapter protein myeloid differentiation primary response 88 (MyD88) to transduce intracellular signaling. MyD88 forms a complex with IL-R-associated kinases (IRAKs), IRAK4 and IRAK2, called the Myddosome (MyD88-IRAK4-IRAK2).

View Article and Find Full Text PDF

Small molecules were developed to attenuate proinflammatory cytokines resulting from activation of MyD88-mediated toll-like receptor (TLR) signaling by Francisella tularensis. Fifty-three tripeptide derivatives were synthesized to mimic a key BB-loop region involved in toll-like/interleukin-1 receptor recognition (TIR) domain interactions. Compounds were tested for inhibition of TNF-α, IFN-γ, IL-6, and IL-1β in human peripheral blood mononuclear cells (PBMCs) and primary human bronchial epithelial cells exposed to LPS extracts from F.

View Article and Find Full Text PDF

Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice.

View Article and Find Full Text PDF

Staphylococcal enterotoxin B (SEB) exposure triggers an exaggerated pro-inflammatory cytokine response that often leads to toxic shock syndrome (TSS) associated with organ failure and death. MyD88 mediates pro-inflammatory cytokine signaling induced by SEB exposure and MyD88(-/-) mice are resistant to SEB intoxication, suggesting that MyD88 may be a potential target for therapeutic intervention. We targeted the BB loop region of the Toll/IL-1 receptor (TIR) domain of MyD88 to develop small-molecule therapeutics.

View Article and Find Full Text PDF

Toxic shock syndrome (TSS) is a clinical consequence of the profound amplification of host pro-inflammatory cytokine signaling that results from staphylococcal enterotoxin (SE) exposure. We recently reported that MyD88(-/-) mice were resistant to SEA or SEB toxic shock and displayed reduced levels of pro-inflammatory cytokines in their serum. Here we report that SEB stimulation of total mononuclear cells up-regulated MyD88 in monocytes and T cells.

View Article and Find Full Text PDF

Interleukin (IL)-1beta is a pluripotent proinflammatory cytokine that signals through the type-I IL-1 receptor (IL-1RI), a member of the Toll-like receptor family. In hypothalamic neurons, binding of IL-1beta to IL-1RI mediates transcription-dependent changes that depend on the recruitment of the cytosolic adaptor protein myeloid differentiation primary-response protein 88 (MyD88) to the IL-1RI/IL-1 receptor accessory protein (IL-1RAcP) complex through homomeric Toll/IL-1 receptor (TIR)-TIR interactions. Through design and synthesis of bifunctional TIR mimetics that disrupt the interaction of MyD88 with the IL-1RI/IL-1RAcP complex, we analyzed the involvement of MyD88 in the signaling of IL-1beta in anterior hypothalamic neurons.

View Article and Find Full Text PDF