Unlike mammals, adult and larval zebrafish exhibit robust regeneration following traumatic spinal cord injury. This remarkable regenerative capacity, combined with exquisite imaging capabilities and an abundance of powerful genetic techniques, has established the zebrafish as an important vertebrate model for the study of neural regeneration. Here, we describe a protocol for the complete mechanical ablation of the larval zebrafish spinal cord.
View Article and Find Full Text PDFTissue regeneration and functional restoration after injury are considered as stem- and progenitor-cell-driven processes. In the central nervous system, stem cell-driven repair is slow and problematic because function needs to be restored rapidly for vital tasks. In highly regenerative vertebrates, such as zebrafish, functional recovery is rapid, suggesting a capability for fast cell production and functional integration.
View Article and Find Full Text PDFHow diverse adult stem and progenitor populations regenerate tissue following damage to the brain is poorly understood. In highly regenerative vertebrates, such as zebrafish, radial-glia (RG) and neuro-epithelial-like (NE) stem/progenitor cells contribute to neuronal repair after injury. However, not all RG act as neural stem/progenitor cells during homeostasis in the zebrafish brain, questioning the role of quiescent RG (qRG) post-injury.
View Article and Find Full Text PDFGene editing using clustered regularly interspaced short palindromic repeats (CRISPR) is widely used throughout the zebrafish community for the generation of knockouts and knockins. One of the bottlenecks that exists during the process is the laborious screening of injected embryos for F0 founder fish or CRISPants, weeks after the injection date. In this study we show that the use of fluorescently tagged tracrRNA and sorting for fluorescent embryos as early as the 512-cell stage using stereomicroscope significantly improve yield of fish with successfully CRISPR/Cas9-edited genomes.
View Article and Find Full Text PDF