Publications by authors named "Mitra Heshmati"

The study of complex behaviors is often challenging when using manual annotation due to the absence of quantifiable behavioral definitions and the subjective nature of behavioral annotation. Integration of supervised machine learning approaches mitigates some of these issues through the inclusion of accessible and explainable model interpretation. To decrease barriers to access, and with an emphasis on accessible model explainability, we developed the open-source Simple Behavioral Analysis (SimBA) platform for behavioral neuroscientists.

View Article and Find Full Text PDF

Comprehensive, continuous quantitative monitoring of intricately orchestrated physiological processes and behavioral states in living organisms can yield essential data for elucidating the function of neural circuits under healthy and diseased conditions, for defining the effects of potential drugs and treatments, and for tracking disease progression and recovery. Here, we report a wireless, battery-free implantable device and a set of associated algorithms that enable continuous, multiparametric physio-behavioral monitoring in freely behaving small animals and interacting groups. Through advanced analytics approaches applied to mechano-acoustic signals of diverse body processes, the device yields heart rate, respiratory rate, physical activity, temperature, and behavioral states.

View Article and Find Full Text PDF

Background: A key challenge in developing treatments for neuropsychiatric illness is the disconnect between preclinical models and the complexity of human social behavior. We integrate voluntary social self-administration into a rodent model of social stress as a platform for the identification of fundamental brain and behavior mechanisms underlying stress-induced individual differences in social motivation.

Methods: Here, we introduced an operant social stress procedure in male and female mice composed of 3 phases: 1) social self-administration training, 2) social stress exposure concurrent with reinforced self-administration testing, and 3) poststress operant testing under nonreinforced and reinforced conditions.

View Article and Find Full Text PDF

Increasing evidence supports a role for brain reward circuitry in modulating arousal along with emergence from anesthesia. Emergence remains an important frontier for investigation, since no drug exists in clinical practice to initiate rapid and smooth emergence. This review discusses clinical and preclinical evidence indicating a role for two brain regions classically considered integral components of the mesolimbic brain reward circuitry, the ventral tegmental area and the nucleus accumbens, in emergence from propofol and volatile anesthesia.

View Article and Find Full Text PDF

Chronic stress in both humans and rodents induces a robust downregulation of neuroligin-2, a key component of the inhibitory synapse, in the NAc that modifies behavioral coping mechanisms and stress resiliency in mice. Here we extend this observation by examining the role of two other inhibitory synapse constituents, vesicular GABA transporter (vGAT) and gephyrin, in the NAc of male mice that underwent chronic social defeat stress (CSDS) and in patients with major depressive disorder (MDD). We first performed transcriptional profiling of vGAT and gephyrin in postmortem NAc samples from a cohort of healthy controls, medicated, and nonmedicated MDD patients.

View Article and Find Full Text PDF

The role of somatostatin interneurons in nucleus accumbens (NAc), a key brain reward region, remains poorly understood due to the fact that these cells account for < 1% of NAc neurons. Here, we use optogenetics, electrophysiology, and RNA-sequencing to characterize the transcriptome and functioning of NAc somatostatin interneurons after repeated exposure to cocaine. We find that the activity of somatostatin interneurons regulates behavioral responses to cocaine, with repeated cocaine reducing the excitability of these neurons.

View Article and Find Full Text PDF

A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc), a key reward region, in male aggression in mice.

View Article and Find Full Text PDF

Behavioral coping strategies are critical for active resilience to stress and depression; here we describe a role for neuroligin-2 (NLGN-2) in the nucleus accumbens (NAc). Neuroligins (NLGN) are a family of neuronal postsynaptic cell adhesion proteins that are constituents of the excitatory and inhibitory synapse. Importantly, NLGN-3 and NLGN-4 mutations are strongly implicated as candidates underlying the development of neuropsychiatric disorders with social disturbances such as autism, but the role of NLGN-2 in neuropsychiatric disease states is unclear.

View Article and Find Full Text PDF

Studies suggest that heightened peripheral inflammation contributes to the pathogenesis of major depressive disorder. We investigated the effect of chronic social defeat stress, a mouse model of depression, on blood-brain barrier (BBB) permeability and infiltration of peripheral immune signals. We found reduced expression of the endothelial cell tight junction protein claudin-5 (Cldn5) and abnormal blood vessel morphology in nucleus accumbens (NAc) of stress-susceptible but not resilient mice.

View Article and Find Full Text PDF

Adult women are twice as likely as men to suffer from affective and anxiety disorders, although the mechanisms underlying heightened female stress susceptibility are incompletely understood. Recent findings in mouse Nucleus Accumbens (NAc) suggest a role for DNA methylation-driven sex differences in genome-wide transcriptional profiles. However, the role of another epigenetic process-microRNA (miR) regulation-has yet to be explored.

View Article and Find Full Text PDF

Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP).

View Article and Find Full Text PDF

Unlabelled: Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes.

View Article and Find Full Text PDF

Anhedonia, or the loss of pleasure in previously rewarding stimuli, is a core symptom of major depressive disorder that may reflect an underlying dysregulation in reward processing. The mesolimbic dopamine circuit, also known as the brain's reward circuit, is integral to processing the rewarding salience of stimuli to guide actions. Manifestation of anhedonia and associated depression symptoms like feelings of sadness, changes in appetite, and psychomotor effects, may reflect changes in the brain reward circuitry as a common underlying disease process.

View Article and Find Full Text PDF

Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior.

View Article and Find Full Text PDF

Background: Repeated exposure to cocaine or social stress leads to lasting structural and functional synaptic alterations in medium spiny neurons (MSNs) of nucleus accumbens (NAc). Although cocaine-induced and stress-induced structural changes in dendritic spines have been well documented, few studies have investigated functional consequences of cocaine and stress at the level of single spines.

Methods: We exposed mice to chronic cocaine or chronic social defeat stress and used two-photon laser scanning microscopy with glutamate photo-uncaging and whole-cell recording to examine synaptic strength at individual spines on two distinct types of NAc MSNs in acute slices after 24 hours of cocaine withdrawal and after chronic social defeat stress.

View Article and Find Full Text PDF

Postsynaptic remodeling of glutamatergic synapses on ventral striatum (vSTR) medium spiny neurons (MSNs) is critical for shaping stress responses. However, it is unclear which presynaptic inputs are involved. Susceptible mice exhibited increased synaptic strength at intralaminar thalamus (ILT), but not prefrontal cortex (PFC), inputs to vSTR MSNs following chronic social stress.

View Article and Find Full Text PDF

Unlabelled: Current vaccines against influenza virus infection rely on the induction of neutralizing antibodies targeting the globular head of the viral hemagglutinin (HA). Protection against seasonal antigenic drift or sporadic pandemic outbreaks requires further vaccine development to induce cross-protective humoral responses, potentially to the more conserved HA stalk region. Here, we present a novel viral vaccine adjuvant comprised of two synthetic ligands for Toll-like receptor 4 (TLR4) and TLR7.

View Article and Find Full Text PDF

Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure.

View Article and Find Full Text PDF

Sirtuins (SIRTs), class III histone deacetylases, are well characterized for their control of cellular physiology in peripheral tissues, but their influence in brain under normal and pathological conditions remains poorly understood. Here, we establish an essential role for SIRT1 and SIRT2 in regulating behavioral responses to cocaine and morphine through actions in the nucleus accumbens (NAc), a key brain reward region. We show that chronic cocaine administration increases SIRT1 and SIRT2 expression in the mouse NAc, while chronic morphine administration induces SIRT1 expression alone, with no regulation of all other sirtuin family members observed.

View Article and Find Full Text PDF

A study shows that circadian glucocorticoid oscillations have dual roles in dendritic spine plasticity. Glucocorticoids control spine formation and elimination through distinct mechanisms, which together are important for motor learning and maintenance.

View Article and Find Full Text PDF

Depression induces structural and functional synaptic plasticity in brain reward circuits, although the mechanisms promoting these changes and their relevance to behavioral outcomes are unknown. Transcriptional profiling of the nucleus accumbens (NAc) for Rho GTPase-related genes, which are known regulators of synaptic structure, revealed a sustained reduction in RAS-related C3 botulinum toxin substrate 1 (Rac1) expression after chronic social defeat stress. This was associated with a repressive chromatin state surrounding the proximal promoter of Rac1.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) compact chromatin structure and repress gene transcription. In schizophrenia, clinical studies demonstrate that HDAC inhibitors are efficacious when given in combination with atypical antipsychotics. However, the molecular mechanism that integrates a better response to antipsychotics with changes in chromatin structure remains unknown.

View Article and Find Full Text PDF

Inhibitor of κB kinase (IκK) has historically been studied in the context of immune response and inflammation, but recent evidence demonstrates that IκK activity is necessary and sufficient for regulation of neuronal function. Chronic social defeat stress of mice increases IκK activity in the nucleus accumbens (NAc) and this increase is strongly correlated to depression-like behaviors. Inhibition of IκK signaling results in a reversal of chronic social defeat stress-induced social avoidance behavior.

View Article and Find Full Text PDF

Previous work has shown that a single dose of cocaine can produce long-term potentiation (LTP) of the glutamatergic synapses received by dopamine neurons in the ventral tegmental area (VTA). This and other plastic changes in the brain's reward circuitry have been suggested to underlie addiction. A recent study has provided new insights into cocaine-induced LTP, showing that it begins 3-5 h after exposure, requires activation of a dopamine D(5)/NMDA receptor cascade, and can be evoked by cocaine application directly to the VTA.

View Article and Find Full Text PDF