Background: Prostate cancer (PCa) is a progressive disease and the most diagnosed cancer in men. The current standard of care for high-risk localized PCa is a combination of androgen deprivation therapy (ADT) and radiation (XRT). The majority of these patients however become resistant due to incomplete responses to ADT as a result of selective cells maintaining androgen receptor (AR) activity.
View Article and Find Full Text PDFBackground Aims: This study evaluates the biological response of adipose tissue-derived mesenchymal stromal cells (aMSCs) to ionizing radiation (IR).
Methods: Irradiated BALB/c mice aMSCs were characterized for functionality and phenotype. The clonogenic capacity of irradiated aMSCs was assessed and compared with those of metastatic breast cancer cell line (4T1) and normal mouse fibroblasts (NIH3T3-wt).
Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities.
View Article and Find Full Text PDFHigh expression of vascular endothelial growth factor (VEGF) in patients with breast cancer has been associated with a poor prognosis, indicating that VEGF could be linked to the efficacy of chemotherapy and radiotherapy. It has also been suggested that radiation resistance is partly due to tumour cell production of angiogenic cytokines, particularly VEGF receptor (VEGFR). This evidence indicates that inhibition of VEGFR might enhance the radiation response.
View Article and Find Full Text PDFBackground: Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular protein that mediates cell-matrix interactions. It has been shown, depending on the type of cancer, to possess either pro- or anti-tumorigenic properties. The transcriptional regulation of the SPARC gene expression has not been fully elucidated and the effects of anti-cancer drugs on this process have not been explored.
View Article and Find Full Text PDFCutaneous wound healing is a complex process, which is heavily dependent on successful inflammatory action. Mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2 or MK2), a major substrate of p38 MAPK, has been shown to be a major player in multiple inflammatory diseases, but its role in cutaneous wound healing has not yet been explored. In this study, by comparing excisional wounds made on the backs of MK2 knockout (KO) and MK2 wild-type (WT) mice, we found that the kinetics of wound healing are significantly affected by the absence of MK2 (P=0.
View Article and Find Full Text PDFZRBA1 is a molecule termed 'combi-molecule' designed to induce DNA-alkylating lesions and to block epidermal growth factor receptor (EGFR) tyrosine kinase. Owing to its ability to downregulate the EGFR tyrosine kinase-mediated antiapoptotic signaling and DNA repair proteins, we inferred that it could significantly sensitize cells to ionizing radiation. Using the MDA-MB-468 human breast cancer cell line in which ZRBA1 has already been reported to induce significant EGFR/DNA-targeting potency, the results showed that: (i) concurrent administration of ZRBA1 and 4 Gy radiation led to a significant decrease in cell viability, (ii) the greater efficacy of the combination was sequential, being limited to conditions wherein the drug was administered concurrently with radiation or before radiation, and (iii) the efficacy enhancement of the combination was further confirmed by clonogenic assays from which a dose enhancement factor of 1.
View Article and Find Full Text PDF