Identifying osmotic stress-responsive transcription factors (TFs) can facilitate discovery of master regulators mediating salt and/or drought tolerance. To date, few RNA-seq datasets for high resolution time course of salt or drought stress treatments are publicly available for certain crop species. However, such datasets may be available for other crops, and in combination with orthology analysis may be used to infer candidate osmotic stress regulators across distantly related species.
View Article and Find Full Text PDFMotivation: Genomic networks represent a complex map of molecular interactions which are descriptive of the biological processes occurring in living cells. Identifying the small over-represented circuitry patterns in these networks helps generate hypotheses about the functional basis of such complex processes. Network motif discovery is a systematic way of achieving this goal.
View Article and Find Full Text PDFTissue-specific gene expression is often thought to arise from spatially restricted transcriptional cascades. However, it is unclear how expression is established at the top of these cascades in the absence of pre-existing specificity. We generated a transcriptional network to explore how transcription factor expression is established in the Arabidopsis thaliana root ground tissue.
View Article and Find Full Text PDFNetwork motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose.
View Article and Find Full Text PDF