Mitochondrial carriers (MCs) belong to a eukaryotic protein family of transporters that in higher organisms is called the solute carrier family 25 (SLC25). All MCs have characteristic triplicated sequence repeats forming a 3-fold symmetrical structure of a six-transmembrane α-helix bundle with a centrally located substrate-binding site. Biochemical characterization has shown that MCs altogether transport a wide variety of substrates but can be divided into subfamilies, each transporting a few specific substrates.
View Article and Find Full Text PDFIntron evolution may be readily imaged through the combined use of the "dot plot" function of the NCBI BLAST, aligning two sequences at a time, and the Vertebrate "Multiz" alignment and conservation tool of the UCSC Genome Browser. With the NCBI BLAST, an ideal alignment of two highly conserved sequences generates a diagonal straight line in the plot from the lower left corner to the upper right corner. Gaps in this line correspond to non-conserved sections.
View Article and Find Full Text PDFThe mitochondrial solute carrier genes (SLC25) are highly conserved during vertebrate evolution. In most SLC25 genes of zebrafish, chicken, mouse, and human, the introns are located at exactly superimposable positions. In these topographically corresponding introns we studied the composition of the initial and terminal hexanucleotides (5'ss and 3'ss) which are instrumental in splicing signaling, focusing on the evolutionary conservation/mutation dynamics of these genetically related sequences.
View Article and Find Full Text PDFThe conservation of intronic sequences was studied in the mitochondrial solute carrier (SLC25A*) genes of Zebrafish, Chicken, Mouse and Human. These genes are homologous and the coding sequences have been well conserved throughout Vertebrates, but the corresponding intronic sequences have been extensively re-edited. However, significant segments of Zebrafish introns are conserved in Chicken, Mouse and Human in carriers SLC25A3, SLC25A21, SLC25A25, SLC25A26, and SLC25A36; Chicken intron segments are conserved in Mouse or Human in three additional carriers, namely SLC25A12, SLC25A13, and SLC25A29.
View Article and Find Full Text PDFThe "canonical" introns begin by the dinucleotide GT and end by the dinucleotide AG. GT, together with a few downstream nucleotides, and AG, with a few of the immediately preceding nucleotides, are thought to be the strongest splicing signals (5'ss and 3'ss, respectively). We examined the composition of the intronic initial and terminal hexanucleotides of the mitochondrial solute carrier genes (SLC25A's) of zebrafish, chicken, mouse, and human.
View Article and Find Full Text PDFThe Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database.
View Article and Find Full Text PDFCardiovascular dysfunction characterizes septic shock, inducing multiple organ failure and a high mortality rate. In the heart, it has been shown an up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions with subsequent overproduction of nitric oxide (NO) and eicosanoids. This study is focused on the links between these products of inflammation and cell loss of mouse cardiomyocytes during treatment by the Salmonella typhimurium lipopolysaccharide (LPS) in presence or in absence of NOS or COX inhibitors.
View Article and Find Full Text PDFDifferent toxic agents, derived from bacteria, viruses or cells of the immune system, as well as mechanical forces generated during cell locomotion are able to open pores in the cell plasma membrane. Most of these biological agents operate through specific receptors. We studied the formation and resealing of the "non-specific" plasma membrane pores generated by the mild non-ionic detergent Triton X-100.
View Article and Find Full Text PDFMultiDrug Resistance (MDR) is due to the ability of some ATPase transporters to efflux chemotherapeutic agents out from tumor cells decreasing the endocellular concentration for the pharmacological effect, causing cancer cells chemoresistance. In the present work, a set of MDR modulating agents (MC89, MC70, PB28, IG9) able to modulate transmembrane ATP-dependent transporter, P-glycoprotein (P-gp), and also to induce inducible nitric oxide synthase (iNOS) expression in a panel of tumor cell lines are presented. All selected compounds, known as potent P-gp modulating agents, stimulated nitric oxide (NO) via iNOS in U937, Caco-2 and MCF7-Adr cell lines.
View Article and Find Full Text PDFThe epithelium of the intestinal tract is exposed to a variety of genotoxic agents, both exogenous and endogenous, that can injure nuclear and mitochondrial DNA. DNA damage can be repaired by a series of DNA repair enzymes, while defects in this system will make these cells once more susceptible to malignant transformation or cell death. Recent studies suggest that intestinal bacteria may contribute to induce inflammation in individuals afflicted by inflammatory bowel disease (IBD), increasing the risk of developing colon cancer.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disease characterised by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra (SN). Despite intensive research, the cause of neuronal loss in PD is poorly understood. Inflammatory mechanisms have been implicated in the pathophysiology of PD.
View Article and Find Full Text PDFThe aim of this study was to analyze the Furin-TNF-α-converting enzyme (TACE)-amphiregulin (AREG)-IL-6/IL-8 secretion pathway in non-neoplastic human salivary gland epithelial cells (SGECs) stimulated with anti-Ro/SSA autoantibodies (Abs). We examined whether anti-Ro/SSA Abs-mediated TACE activation is responsible for AREG activation. As recent studies have demonstrated that AREG could induce proinflammatory cytokines secretion in epithelial cells, we discuss how TACE-mediated AREG shedding, caused by anti-Ro/SSA Abs treatment, could have a critical role in TNF-α-induced IL-6 and IL-8 secretion by SGEC.
View Article and Find Full Text PDFThe tumor-necrosis-factor-converting-enzyme (TACE)-TNF-α-Amphiregulin (AREG) axis plays an important pathogenic role in inflammatory and autoimmune disorders. However, the pathological roles of these proteins in the chronic autoimmune disease Sjögren's syndrome (SS) remain to be elucidated. It is known that the TACE-AREG axis is clearly part of a larger cascade of signals that starts with the activation of Furin, responsible for maturation of TACE that, in turn, determines the production of active TNF-α, directly involved in the up-regulation of AREG expression.
View Article and Find Full Text PDFProlonged inflammation can be detrimental because it may cause host toxicity and tissue damage. Indeed, excessive production of inflammatory cytokines is often associated with many autoimmune diseases. In this study we demonstrate that the anti-Ro/SSA autoantibodies (Abs) stimulate the production of pro-inflammatory cytokines IL-6 and IL-8 by human healthy salivary gland epithelial cells (healthy SGEC).
View Article and Find Full Text PDFHumans are widely exposed to Mycobacterium avium subspecies paratuberculosis (MAP), a proven multi-host chronic enteric pathogen that has recently been linked to autoimmune diabetes. In the present study we used a MAP species-specific polymerase chain reaction with the insertion element IS900-specific probe to detect MAP infection in members of the same family suffering from Hashimoto's thyroiditis.
View Article and Find Full Text PDFLipopolysaccharide (LPS) the major structural component of the outer membrane of Gram-negative bacteria contributes to the cardiovascular collapse and death observed in septic patients, as well as in the immunocompromised host. LPS activates multiple cells to release proinflammatory cytokines, nitric oxide (NO) and other reactive molecules able to depress cardiac functions. It has been appreciated that the pattern recognition receptor, TLR4, is a signalling receptor for LPS, but its role in the embryonal cardiomyocytes is poorly understood.
View Article and Find Full Text PDFThis study is focused on the links between the major products of inflammation and cell damage induced by the administration of lipopolysaccharide (LPS) from Salmonella typhimurium in embryonal cardiomyocytes. LPS treatment for 72 hours induced transcription factor NF-kappaB activation, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression, nitric oxide (NO) and tumor necrosis factor (TNF)-alpha release. Moreover, LPS administration induced a significant cell loss, reversed by the NO-synthases inhibitor, suggesting a relationship between cell damage and iNOS-dependent NO overproduction.
View Article and Find Full Text PDFIn this work, we examine the effects of lipopolysaccharide (LPS) treatment on nerve cells of chick embryo used as a universal avian model. We demonstrate that LPS leads to a dramatic cell loss in primary cultures of both glia and neurons, isolated from chick embryos. Toxic effects appear to be mediated by the Toll-like receptor (TLR)-4 complex, expressed in both glial and neuronal cells, since after TLR-4 silencing by RNA interference experiments LPS-induced cytotoxicity was prevented.
View Article and Find Full Text PDFNovel biologic therapies targeted against specific components of the immune system, including blockade of TNF-α have revolutionized therapeutic approaches to inflammatory conditions and systemic inhibitors of TNF-α have been approved for the treatment of a wide variety of autoimmune diseases. No studies aimed to elucidate the effects of anti-TNF-α blockers on tumour necrosis factor-α convertase (TACE) expression and activation have yet been published. TACE is the principal protease involved in the activation of pro-TNF-α and is a target for anti-TNF-α therapy.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
March 2010
The aim of this study was to evaluate, in terms of dog macrophage killing ability in vitro, a vaccine based on Leishmania infantum promastigote soluble antigen (LSA) formulated with three different adjuvants (BCG, AdjuPrime, MPL/TDM/CWS). A significant increase of the macrophage killing ability was observed in dogs vaccinated with LSA+MPL/TDM/CWS after 1 month from vaccination. A similar increase of macrophage parasitocidal ability was present only after 5 months in dogs vaccinated with LSA+BCG or LSA+AdjuPrime.
View Article and Find Full Text PDFApoptosis of the acinar and ductal epithelial cells of the salivary glands has been proposed as a mechanism possibly responsible for the impairment of the secretory function in Sjögren's syndrome, an organ-specific autoimmune disorder characterized by destruction of these glandular structures. The presence of serum autoantibodies (Abs) directed against the ribonucleoproteic antigens Ro and La is one of the classification criteria used to identify Sjögren patients, and there is increasing evidence of the direct involvement of Abs in tissue pathogenesis. Our recent report demonstrated that anti-Ro and anti-La Abs are able to trigger the extrinsic pathway of apoptosis in the human salivary gland cells.
View Article and Find Full Text PDFThe release of the soluble form of tumor necrosis factor (TNF)-alpha from the plasma membrane occurs through the activation of the secretase tumor necrosis factor-alpha-converting enzyme (TACE). The current study was designed to examine whether the anti-Ro/SSA autoantibodies (Abs) are capable to regulate TACE expression in non-neoplastic human salivary gland epithelial cells (SGEC) cultures. We investigated the effect of anti-Ro/SSA Abs on the localization and abundance of cell-surface TACE and on TACE pro-domain-shedding and activation.
View Article and Find Full Text PDFInhibition of tumor necrosis factor-alpha (TNF-alpha) in organ-specific autoimmune disease is proving efficacious for a large number of patients. A wide array of biological agents has been designed to inhibit TNF-alpha, such as adalimumab (fully humanized) and etanercept (soluble TNF-alpha receptor fusion constructs p75 subunit). Recently, we suggested that anti-Ro and anti-La autoantibodies (Abs) isolated from patients with Sjögren's syndrome, an autoimmune rheumatic disease, are able to trigger cell death through extrinsic apoptotic mechanisms in human salivary gland epithelial cells (SGEC).
View Article and Find Full Text PDF