Publications by authors named "Mitko Aleksandrov"

Voxel-based data structures, algorithms, frameworks, and interfaces have been used in computer graphics and many other applications for decades. There is a general necessity to seek adequate digital representations, such as voxels, that would secure unified data structures, multi-resolution options, robust validation procedures and flexible algorithms for different 3D tasks. In this review, we evaluate the most common properties and algorithms for voxelisation of 2D and 3D objects.

View Article and Find Full Text PDF

Light field cameras capture spatial and angular information simultaneously. A scene point in the 3D space appears many times on the raw image, bringing challenges to light field camera calibration. This paper proposes a novel calibration method for standard plenoptic cameras by using corner features from raw images.

View Article and Find Full Text PDF

Machine learning algorithms can be well suited to LiDAR point cloud classification, but when they are applied to the point cloud classification of power facilities, many problems such as a large number of computational features and low computational efficiency can be encountered. To solve these problems, this paper proposes the use of the Adaboost algorithm and different topological constraints. For different objects, the top five features with the best discrimination are selected and combined into a strong classifier by the Adaboost algorithm, where coarse classification is performed.

View Article and Find Full Text PDF