Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment.
View Article and Find Full Text PDF(99m)Tc-N4-guanine ((99m)Tc-N4amG) was synthesized and evaluated in this study. Cellular uptake and cellular fraction studies were performed to evaluate the cell penetrating ability. Biodistribution and planar imaging were conducted in breast tumor-bearing rats.
View Article and Find Full Text PDFObjective: This study was aimed to assess pancreas beta cell activity using (99m)Tc-diethyleneaminepentaacetic acid-glipizide (DTPA-GLP), a sulfonylurea receptor agent. The effect of DTPA-GLP on the blood glucose level in rats was also evaluated.
Methods: DTPA dianhydride was conjugated with GLP in the presence of sodium amide, yielding 60%.
Purpose: This study was to develop an efficient synthesis of (99m)Tc-O-[3-(1,4,8,11-tetraazabicyclohexadecane)-propyl]-α-methyl tyrosine ((99m)Tc-N4-AMT) and evaluate its potential in cancer imaging.
Methods: N4-AMT was synthesized by reacting N4-oxalate and 3-bromopropyl AMT (N-BOC, ethyl ester). In vitro cellular uptake kinetics of (99m)Tc-N4-AMT was assessed in rat mammary tumor cells.
Objective: This study was to develop a (99m)Tc-labeled alpha-methyl tyrosine (AMT) using L,L-ethylenedicysteine (EC) as a chelator and to evaluate its potential in breast tumor imaging in rodents.
Methods: EC-AMT was synthesized by reacting EC and 3-bromopropyl AMT (N-BOC, ethyl ester) in ethanol/potassium carbonate solution. EC-AMT was labeled with (99m)Tc in the presence of tin (II) chloride.
Recent Pat Anticancer Drug Discov
November 2007
Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. The application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of many ongoing research projects.
View Article and Find Full Text PDFRationale And Objectives: The aims of this study were to label the versatile amino acid l-lysine with (99m)Tc using 2,3-dimercapto-succinic acid (DMSA) as a chelator, and to assess its tumor imaging feasibility under in vivo and in vitro conditions, and finally to determine the subcellular biodistribution of this radiopharmaceutical.
Materials And Methods: DMSA-l-lysine was chemically synthesized and labeled with sodium pertechnetate. Nuclear magnetic resonance (NMR) and mass spectral analysis of DMSA-l-lysine were conducted.