Publications by authors named "Mitchison T"

Article Synopsis
  • Cells are crucial for studying health and diseases, but traditional models are limited in their ability to accurately represent cell function and behavior.
  • Advances in AI and omics technology enable the development of AI virtual cells (AIVCs), complex models that simulate molecular, cellular, and tissue behavior across various conditions.
  • The creation of AIVCs aims to enhance biological research by allowing detailed simulations, speeding up discoveries, and promoting collaborative and interdisciplinary approaches in open scientific research.
View Article and Find Full Text PDF

Coronavirus-infected cells contain double-membrane vesicles (DMVs) that are key for viral RNA replication and transcription, perforated by hexameric pores connecting the vesicular lumen to the cytoplasm. How pores form and traverse two membranes, and how DMVs organize RNA synthesis, is unknown. Using structure prediction and functional assays, we show that the nonstructural viral membrane protein nsp4 is the key pore organizer, spanning the double membrane and forming most of the pore lining.

View Article and Find Full Text PDF

The cell is arguably the most fundamental unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intelligence (AI), combined with the ability to generate large-scale experimental data, present novel opportunities to model cells.

View Article and Find Full Text PDF

Eukaryotic cells direct toxic misfolded proteins to various protein quality control pathways based on their chemical features and aggregation status. Aggregated proteins are targeted to selective autophagy or specifically sequestered into the "aggresome," a perinuclear inclusion at the microtubule-organizing center (MTOC). However, the mechanism for selectively sequestering protein aggregates into the aggresome remains unclear.

View Article and Find Full Text PDF

Stathmins are small, unstructured proteins that bind tubulin dimers and are implicated in several human diseases, but whose function remains unknown. We characterized a new stathmin, STMND1 (Stathmin Domain Containing 1) as the human representative of an ancient subfamily. STMND1 features a N-terminal myristoylated and palmitoylated motif which directs it to membranes and a tubulin-binding stathmin-like domain (SLD) that contains an internal nuclear localization signal.

View Article and Find Full Text PDF

Open Reading Frame 6 (ORF6) proteins, which are unique to severe acute respiratory syndrome-related (SARS) coronavirus, inhibit the classical nuclear import pathway to antagonize host antiviral responses. Several alternative models were proposed to explain the inhibitory function of ORF6 [H. Xia .

View Article and Find Full Text PDF

Biomolecular condensates formed by liquid-liquid phase separation have been implicated in multiple diseases. Modulation of condensate dynamics by small molecules has therapeutic potential, but so far, few condensate modulators have been disclosed. The SARS-CoV-2 nucleocapsid (N) protein forms phase-separated condensates that are hypothesized to play critical roles in viral replication, transcription, and packaging, suggesting that N condensation modulators might have anti-coronavirus activity across multiple strains and species.

View Article and Find Full Text PDF
Article Synopsis
  • * In an experiment with X. laevis, researchers knocked down the Wnt11b and Wnt11 proteins separately and together, revealing that while both caused similar initial developmental delays, they exhibited distinct differences in later tailbud stages.
  • * The study found that the maturation of the dorsal blastopore lip and subsequent internalization processes were negatively affected by decreased Wnt11 signaling, indicating a critical link between these signaling pathways and the mechanical aspects of early embryonic development.
View Article and Find Full Text PDF

The gut cell wall is considered an impenetrable barrier to orally administrated polysaccharides. We recently reported a selective lymphatic route for Radix Astragali polysaccharide RAP to enter Peyer's patches (PPs) to trigger immune responses. However, how RAP enters PPs is unclear.

View Article and Find Full Text PDF

Gut barrier makes a huge research gap between in vivo and in vitro studies of orally bioactive polysaccharides: whether/how they contact the related cells in vivo. A hyperbranched heteroglycan RAP from Radix Astragali, exerting antitumor and immunomodulatory effects in vitro and in vivo, is right an example. Here, we determined first that RAP's antitumor activity is immune-dependent.

View Article and Find Full Text PDF

Suppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single-virus or -gene basis.

View Article and Find Full Text PDF

How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required.

View Article and Find Full Text PDF

SARS coronavirus ORF6 inhibits the classical nuclear import pathway to antagonize host antiviral responses. Several models were proposed to explain its inhibitory function, but quantitative measurement is needed for model evaluation and refinement. We report a broadly applicable live-cell method for calibrated dose-response characterization of the nuclear transport alteration by a protein of interest.

View Article and Find Full Text PDF

Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase.

View Article and Find Full Text PDF

Traditional herbal medicines, which emphasize a holistic, patient-centric view of disease treatment, provide an exciting starting point for discovery of new immunomodulatory drugs. Progress on identification of herbal molecules with proven single agent activity has been slow, in part because of insufficient consideration of pharmacology fundamentals. Many molecules derived from medicinal plants exhibit low oral bioavailability and rapid clearance, leading to low systemic exposure.

View Article and Find Full Text PDF

PARP7 is a monoPARP that catalyzes the transfer of single units of ADP-ribose onto substrates to change their function. Here, we identify PARP7 as a negative regulator of nucleic acid sensing in tumor cells. Inhibition of PARP7 restores type I interferon (IFN) signaling responses to nucleic acids in tumor models.

View Article and Find Full Text PDF

Natural killer (NK) cells participate in cancer immunosurveillance and cancer immunotherapy. Live cell imaging of cancer cells targeted by NK cells, published today in BMC Biology by Zhu et al., reveals a remarkable diversity of programmed cell death pathways induced in individual cells.

View Article and Find Full Text PDF

The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes.

View Article and Find Full Text PDF

Macromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG-repeat domains in NPCs are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear.

View Article and Find Full Text PDF

Colchicine has served as a traditional medicine for millennia and remains widely used to treat inflammatory and other disorders. Colchicine binds tubulin and depolymerizes microtubules, but it remains unclear how this mechanism blocks myeloid cell recruitment to inflamed tissues. Here we show that colchicine inhibits myeloid cell activation via an indirect mechanism involving the release of hepatokines.

View Article and Find Full Text PDF

Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community, we built an easy-to-use browser, shinyDepMap (https://labsyspharm.

View Article and Find Full Text PDF

Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in  egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates.

View Article and Find Full Text PDF

An investigation of how mitotic spindle size scales with cell size in early zebrafish embryos reveals fundamental principles of spindle organization. Spindle size depends primarily on microtubule number, which is regulated by a reaction-diffusion system when cells are large, and by signals from the plasma membrane when they are small.

View Article and Find Full Text PDF