Publications by authors named "Mitchell de Souza"

Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges.

View Article and Find Full Text PDF

Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood.

View Article and Find Full Text PDF

Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays.

View Article and Find Full Text PDF

Recent evidence demonstrates that the pulvinar nuclei play a critical role in shaping the connectivity and function of the multiple cortical areas they connect. Surprisingly, however, little is known about the development of this area, the largest corpus of the thalamic nuclei, which go on to occupy 40% of the adult thalamus in the human. It was proposed that the nonhuman primate and the human pulvinar develop according to very different processes, with a greatly reduced neurogenic period in nonhuman primate compared to human and divergent origins.

View Article and Find Full Text PDF

The primate visual brain possesses a myriad of pathways, whereby visual information originating at the retina is transmitted to multiple subcortical areas in parallel, before being relayed onto the visual cortex. The dominant retinogeniculostriate pathway has been an area of extensive study, and Vivien Casagrande's work in examining the once overlooked koniocellular pathway of the lateral geniculate nucleus has generated interest in how alternate subcortical pathways can contribute to visual perception. Another subcortical visual relay center is the inferior pulvinar (PI), which has four subdivisions and numerous connections with other subcortical and cortical areas and is directly recipient of retinal afferents.

View Article and Find Full Text PDF

Ischemic stroke remains a leading cause of disability worldwide. Surviving patients often suffer permanent neurological impairments, and spontaneous recovery rarely occurs. However, observations that early-life brain injuries, including strokes, elicit less severe long-term functional impairments, compared to adults, continue to intrigue.

View Article and Find Full Text PDF

Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans.

View Article and Find Full Text PDF

The development of the neocortex requires co-ordination between proliferation and differentiation, as well as the precise orchestration of neuronal migration. Eph/ephrin signaling is crucial in guiding neurons and their projections during embryonic development. In adult ephrin-A2 knockout mice we consistently observed focal patches of disorganized neocortical laminar architecture, ranging in severity from reduced neuronal density to a complete lack of neurons.

View Article and Find Full Text PDF