Publications by authors named "Mitchell T Ringuet"

The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice.

View Article and Find Full Text PDF

Neurons that originate from pre-vertebral sympathetic ganglia, the splanchnic-celiac-superior mesenteric ganglion complex (SCSMG) in mouse, have important roles in control of organs of the upper abdomen. Here, we present a protocol for the isolation of the mouse sympathetic SCSMG. We describe steps for surgical incision, ganglia isolation, ganglia fine dissection, and whole-mount SCSMG after clearing-enhanced 3D (Ce3D) clearing method and immunohistochemistry.

View Article and Find Full Text PDF
Article Synopsis
  • Recruitment of AMPA receptors is essential for enhancing neuronal connections related to learning and memory, driven by calcium influx via NMDA receptors.
  • A newly identified protein, Copine-6, acts as a calcium sensor that helps in the exocytosis of AMPA receptors, while synaptotagmins are functionally redundant in this process.
  • Loss of Copine-6 disrupts AMPA receptor exocytosis but does not affect overall receptor levels, indicating its specific role during synaptic strengthening.
View Article and Find Full Text PDF

Agonists of dopamine D2 receptors (D2R), 5-hydroxytryptamine (5-HT, serotonin) receptors (5-HTR) and ghrelin receptors (GHSR) activate neurons in the lumbosacral defecation centre, and act as 'colokinetics', leading to increased propulsive colonic motility, in vivo. In the present study, we investigated which neurons in the lumbosacral defecation centre express the receptors and whether dopamine, serotonin and ghrelin receptor agonists act on the same lumbosacral preganglionic neurons (PGNs). We used whole cell electrophysiology to record responses from neurons in the lumbosacral defecation centre, following colokinetic application, and investigated their expression profiles and the chemistries of their neural inputs.

View Article and Find Full Text PDF

The growth hormone secretagogue receptor 1a (GHSR1a) is intriguing because of its potential as a therapeutic target and its diverse molecular interactions. Initial studies of the receptor focused on the potential therapeutic ability for growth hormone (GH) release to reduce wasting in aging individuals, as well as food intake regulation for treatment of cachexia. Known roles of GHSR1a now extend to regulation of neurogenesis, learning and memory, gastrointestinal motility, glucose/lipid metabolism, the cardiovascular system, neuronal protection, motivational salience, and hedonic feeding.

View Article and Find Full Text PDF

Parkinson's disease (PD) is associated with neuronal damage in the brain and gut. This work compares changes in the enteric nervous system (ENS) of commonly used mouse models of PD that exhibit central neuropathy and a gut phenotype. Enteric neuropathy was assessed in five mouse models: peripheral injection of MPTP; intracerebral injection of 6-OHDA; oral rotenone; and mice transgenic for A53T variant human α-synuclein with and without rotenone.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effectiveness of different forms of dietary selenium (inorganic, organic, and nanoelemental) in increasing the activity of the antioxidant protein glutathione peroxidase (GPx) in mice.
  • Results showed that all forms of selenium could be effectively incorporated into various tissues, with the highest selenium levels found in mice fed a diet rich in selenium (1.7 ppm).
  • The research suggested that bacteria might play a role in converting nanoelemental selenium into forms that the body can use, especially in mice lacking gut bacteria (germ-free).
View Article and Find Full Text PDF

Background: Dopamine receptor 2 (DRD2) and ghrelin receptor (GHSR1a) agonists both stimulate defecation by actions at the lumbosacral defecation center. Dopamine is in nerve terminals surrounding autonomic neurons of the defecation center, whereas ghrelin is not present in the spinal cord. Dopamine at D2 receptors generally inhibits neurons, but at the defecation center, its effect is excitatory.

View Article and Find Full Text PDF

Background: Chronic stress exacerbates motor deficits and increases dopaminergic cell loss in several rodent models of Parkinson's disease (PD). However, little is known about effects of stress on gastrointestinal (GI) dysfunction, a common non-motor symptom of PD. We aimed to determine whether chronic stress exacerbates GI dysfunction in the A53T mouse model of PD and whether this relates to changes in α-synuclein distribution.

View Article and Find Full Text PDF

We use a monoclonal antibody against the C-terminal of oxyntomodulin (OXM) to investigate enteroendocrine cells (EEC) in mouse, rat, human and pig. This antibody has cross-reactivity with the OXM precursor, glicentin (Gli) but does not recognise glucagon. The antibody stained EEC in the jejunum and colon of each species.

View Article and Find Full Text PDF

In laboratory animals and in human, centrally penetrant ghrelin receptor agonists, given systemically or orally, cause defecation. Animal studies show that the effect is due to activation of ghrelin receptors in the spinal lumbosacral defecation centers. However, it is not known whether there is a physiological role of ghrelin or the ghrelin receptor in the control of defecation.

View Article and Find Full Text PDF