The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients.
View Article and Find Full Text PDFFEbeam is an all-in-one field emission data processing interface with the capability to analyze the field emission cathode performance in an rf injector by extracting the field enhancement factor, local field, and effective emission area from the Fowler-Nordheim equations. It also has the capability of processing beam imaging micrographs using its sister software, FEpic. The current version of FEbeam was designed for the Argonne Cathode Test-stand of the Argonne Wakefield Accelerator facility switch yard.
View Article and Find Full Text PDF