Publications by authors named "Mitchell Page"

Objective: electrical impedance tomography (EIT) is a promising technique for rapid and continuous bedside monitoring of lung function. Accurate and reliable EIT reconstruction of ventilation requires patient-specific shape information. However, this shape information is often not available and current EIT reconstruction methods typically have limited spatial fidelity.

View Article and Find Full Text PDF

Following herniation of the intervertebral disc, there is a need for advanced surgical strategies to protect the diseased tissue from further herniation and to minimize further degeneration. Accordingly, a novel tissue engineered implant for annulus fibrosus (AF) repair was fabricated three-dimensional fiber deposition and evaluated in a large animal model. Specifically, lumbar spine kinetics were assessed for eight (n = 8) cadaveric ovine lumbar spines in three pure moment loading settings (flexion-extension, lateral bending, and axial rotation) and three clinical conditions (intact, with a defect in the AF, and with the defect treated using the AF repair implant).

View Article and Find Full Text PDF

Study Objective: To minimize the risk of cervical spinal cord injury in patients who have cervical spine pathology, minimizing cervical spine motion during laryngoscopy and tracheal intubation is commonly recommended. However, clinicians may better aim to reduce cervical spinal cord strain during airway management of their patients. The aim of this study was to predict laryngoscope force characteristics (location, magnitude, and direction) that would minimize cervical spine motions and cord strains.

View Article and Find Full Text PDF

Background: In a closed claims study, most patients experiencing cervical spinal cord injury had stable cervical spines. This raises two questions. First, in the presence of an intact (stable) cervical spine, are there tracheal intubation conditions in which cervical intervertebral motions exceed physiologically normal maximum values? Second, with an intact spine, are there tracheal intubation conditions in which potentially injurious cervical cord strains can occur?

Methods: This study utilized a computational model of the cervical spine and cord to predict intervertebral motions (rotation, translation) and cord strains (stretch, compression).

View Article and Find Full Text PDF

Background: In tissue engineering (TE) strategies, cell processes are regulated by mechanical stimuli. Although TE scaffolds have been developed to replicate tissue-level mechanical properties, it is intractable to experimentally measure and prescribe the cellular micromechanical environment (CME) generated within these constructs. Accordingly, this study aimed to fill this lack of understanding by modeling the CME in TE scaffolds using the finite element method.

View Article and Find Full Text PDF

Cell fate in tissue engineering (TE) strategies is paramount to regenerate healthy, functional organs. The mechanical loads experienced by cells play an important role in cell fate. However, in TE scaffolds with a cell-laden hydrogel matrix, it is prohibitively complex to prescribe and measure this cellular micromechanical environment (CME).

View Article and Find Full Text PDF

Tissue engineering (TE) is an emerging intervertebral disc (IVD) repair strategy to alleviate pain and mitigate the functional impairment associated with IVD disease. A prevalent strategy to fabricate annulus fibrosus (AF) repair scaffolds is 3D fiber deposition (3DF) which generates scaffolds with highly tailorable mechanics due to a diverse range of print parameters. An essential element of TE is providing the requisite micromechanical environment for the generation and maintenance of healthy mature tissue.

View Article and Find Full Text PDF

Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown.

View Article and Find Full Text PDF